Return to search

Assembly and functionalization of phage onto substrates patterned by dip-pen nanolithography

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006. / Includes bibliographical references (leaves 25-26). / Advances in nanochemistry will drive the development of technologies at the scale of 1 - 100 nm. Principles of biology are used for the self-assembly of structures and devices at this scale. The Ml 13 bacteriophage, a virus employed in phage-display libraries, serves as a scaffold for nanoscale structures. Phage are functionalized with inorganic materials, and controlled placement of phage at the nanoscale may lead to useful devices. Substrates patterned with dip-pen nanolithography (DPN) serve as templates for the deposition of phage. On gold substrates, 16-mercaptohexadecanoic acid (MHA) is deposited to form patterned lines. After surface passivation and activation chemistry, phage are deposited and adhere to the patterned substrate. Images from atomic force microscopy support that phage are covalently coupled to MHA lines and that cobalt precipitates on patterned phage. / by David S. Gray. / S.B.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/35069
Date January 2006
CreatorsGray, David Steven
ContributorsAngela M. Belcher., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format26 leaves, 1422574 bytes, 1420983 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0024 seconds