Return to search

Effects of doping single and double walled carbon nanotubes with nitrogen and boron

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006. / Includes bibliographical references (p. 135-143). / Controlling the diameter and chirality of carbon nanotubes to fine tune their electronic band gap will no longer be enough to satisfy the growing list of characteristics that future carbon nanotube applications are starting to require. Controlling their band gap, wall reactivity and mechanical properties is imperative to make them functional. The solution to these challenges is likely to lie in smart defect engineering. Defects of every kind can induce significant changes on the intrinsic properties of carbon nanotubes. In this context, this thesis analyzes the effects of doping single and double walled carbon nanotubes with nitrogen and boron. We describe the synthesis of N-doped single-walled carbon nanotubes (N-SWNTs), that agglomerate in bundles and form long strands (<10cm), via the thermal decomposition of ferrocene/ethanol/benzylamine (FEB) solutions in an Ar atmosphere at 950°C. Using Raman spectroscopy, we noted that as the N content is increased in the starting FEB solution, the growth of large diameter tubes is inhibited. We observed that the relative electrical conductivity of the strands increases with increasing nitrogen concentration. Thermogravimetric analysis (TGA) showed novel features for highly doped tubes, that are related to chemical reactions on N sites. / (cont.) We also carried out resonance Raman studies of the coalescence process of double walled carbon nanotubes in conjunction with high resolution transmission electron microscope (HRTEM) experiments on the same samples, heat treated to a variety of temperatures and either undoped or Boron doped. As the heat treatment temperatures are increased (to 1300°C) a Raman mode related to carbon-carbon chains (w = 1855cm-1) is observed before DWNT coalescence occurs. These chains are expected to be 3-5 atoms long and they are established covalently between adjacent DWNTs. The sp carbon chains trigger nanotube coalescence via a zipper mechanism and the chains disappear once the tubes merge. Other features of the Raman spectra were analyzed as a function of heat treatment with special emphasis on the metallic or semiconducting nature of the layers constituting the DWNTs. DWNTs whose outer wall is metallic tend to interact more with the dopant and their outer tubes are the predominant contributors to the line shape of the G and G' bands. / (cont.) The metallic or semiconducting nature of the layers of the DWNTs does not affect their coalescence temperature. All the experiments and analysis presented in this thesis are the result of a collaborative effort between Professor Dresselhaus' group at MIT and its international collaborators, including Professor Endo's group at Shinshu University, Nagano, Japan, Professors Pimenta's and Jorio's group at the Federal University of Minas Gerais, Belo Horizonte, Brazil, and Professors M. and H. Terrones' group at IPICYT, San Luis Potosi, Mexico. / by Federico Villalpando Paéz. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/36215
Date January 2006
CreatorsVillalpando Paéz, Federico
ContributorsMildred S. Dresselhaus and Francesco Stellacci., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format143 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0017 seconds