Includes bibliographical references / Forecasting stock performance has long been one of the primary objectives of financial practitioners. Literature has shown that the classical linear approach to modelling the interactions among company-specific factors and its stock market re- turns in time have become less suited for capturing the movements of the stock market. Hence, attempts to predict the performance of a stock have become associated with additional layers of complexity. This has led to the adoption of non-linear approaches to forecast stock performance. This dissertation explores the performance of some non-linear models in the South African market. These were classification and regression trees (CART), logistic regression and a random forest approach com- pared against a linear regression model. Moreover, a hybrid model between CART and logistic regression was considered. The models fell into two categories (i.e., static and dynamic models). Using a set of classification and portfolio performance metrics it was found that that a dynamic modelling approach outperformed a static approach. Overall, the logistic and linear regression models dominated in terms of performance against the tree-based models and hybrid approaches. The results also demonstrated that a hybrid approach offered an improvement over a stand-alone CART.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/15732 |
Date | January 2015 |
Creators | Hutheram, Nikhil Arnaidas |
Contributors | Bosman, Petrus |
Publisher | University of Cape Town, Faculty of Commerce, Division of Actuarial Science |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Master Thesis, Masters, MPhil |
Format | application/pdf |
Page generated in 0.0018 seconds