Return to search

Evolutions de Schramm-Loewner et théories conformes;<br />Deux exemples de systèmes désordonnés de basse dimension

La première partie de cette thèse est consacrée à l'étude d'interfaces critiques bidimensionnelles par des méthodes d'évolutions de Schramm-Loewner (SLE) et de théories conformes. Nous étudions en particulier le cas de SLE(2) qui est la limite d'échelle des marches à boucles effacées. La solution explicite du problème d'enroulement sur des domaines doublement connexes est discutée. Nous établissons une généralisation de la formule de Schramm pour SLE(2) dans la géométrie doublement connexe et étendons la solution au cas de conditions mixtes Dirichlet-Neumann. L'analyse par la théorie conforme permet l'identification de l'opérateur de changement des conditions aux bords. De plus, à partir de l'étude des lignes de discontinuité du champ gaussien libre sur des domaines doublement connexes nous mettons en évidence une relation entre SLE(4) et les ponts browniens.<br /><br />Le sujet de la seconde partie est l'étude de deux exemples de systèmes désordonnés de basse dimension. D'un coté nous établissons les propriétés de localisation et spectrales d'un hamiltonien aléatoire unidimensionnel qui interpole entre les cas du modèle de Halperin et le modèle supersymétrique désordonné. Un lien avec la diffusion unidimensionnelle dans un potentiel aléatoire permet d'étudier la modification de la dynamique ultra-lente de Sinai en présence d'absorbeurs. De l'autre côté nous analysons la transition vitreuse d'ARN pour des séquences aléatoires à l'aide de la théorie des champs de Lässig-Wiese-David. L'application au cas d'ARN soumis à une force extérieure conduit à la prédiction de la caractéristique force-extension pour des séquences hétérogènes. L'étude de la phase vitreuse nous amène à considérer un modèle hiérarchique combinatoire dont nous déterminons les exposants et lois d'échelle exactes ainsi que les corrections de taille finie.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00422366
Date28 September 2009
CreatorsHagendorf, Christian
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds