Dans leur recherche d'une théorie unifiée des interactions fondamentales, contenant en particulier un modèle quantique de la gravitation, les physiciens ont imaginé des théories de supercordes, dans lesquelles, en plus des cordes, on trouve des objets étendus de diverses dimensions, reliés par le groupe de U-dualité. De plus, on conjecture l'existence d'une théorie mère, la théorie M, dont la limite de basse énergie serait la supergravité à onze dimensions. Dans ce travail, nous montrons qu'en partant des surfaces de del Pezzo, on peut construire des superalgèbres de Kac-Moody généralisées qui contiennent les groupes de U-dualité et donnent le contenu en champs bosoniques (doublé) de la théorie M et de ses réductions dimensionnelles. On retrouve alors les équations du mouvement comme une condition d'auto-dualité, associée à une symétrie du réseau de Picard de la surface de del Pezzo correspondante. Cela permet d'expliquer la symétrie du «triangle magique» de Cremmer, Julia, Lü etPope.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00005254 |
Date | 22 September 2003 |
Creators | Paulot, Louis |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0028 seconds