Return to search

Extremal problems on the hypercube

The hypercube, Qd, is a natural and much studied combinatorial object, and we discuss various extremal problems related to it. A subgraph of the hypercube is said to be (Qd; F)-saturated if it contains no copies of F, but adding any edge forms a copy of F. We write sat(Qd; F) for the saturation number, that is, the least number of edges a (Qd; F)-saturated graph may have. We prove the upper bound sat(Qd;Q2) < 10 2d, which strongly disproves a conjecture of Santolupo that sat(Qd;Q2) = 1 4 + o(1) d2d 1. We also prove upper bounds on sat(Qd;Qm) for general m. Given a down-set A and an up-set B in the hypercube, Bollobás and Leader conjectured a lower bound on the number of edge-disjoint paths between A and B in the directed hypercube. Using an unusual form of the compression argument, we confirm the conjecture by reducing the problem to a the case of the undirected hypercube. We also prove an analogous conjecture for vertex-disjoint paths using the same techniques, and extend both results to the grid. Additionally, we deal with subcube intersection graphs, answering a question of Johnson and Markström of the least r = r(n) for which all graphs on n vertices may be represented as subcube intersection graph where each subcube has dimension exactly r. We also contribute to the related area of biclique covers and partitions, and study relationships between various parameters linked to such covers and partitions. Finally, we study topological properties of uniformly random simplicial complexes, employing a characterisation due to Korshunov of almost all down-sets in the hypercube as a key tool.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:765812
Date January 2016
CreatorsPinto, Trevor Alvaro Anthony
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/23651

Page generated in 0.0017 seconds