Mathematical modeling of biological systems has improved the knowledge of scientists for many years. In virology, particularly in the study of hepatitis B virus, mathematical models were used to explain interactions between hepatitis B virus and the human host in the absence and presence of interventions such as drug therapy and vaccines. This thesis seeks to explain the role of e-Antigen, a particle produced by hepatitis B virus, in the pathogenesis of hepatitis B infection. To accomplish this goal, I will provide biological background as well as previous modeling work on the role of e-Antigen in hepatitis B virus infection, before finally developing a new model adapted specifically for connecting hepatitis B progression with e-Antigen and drug therapy. I will analyze the model both analytically and numerically, fit it to virus data from humans chronically infected with hepatitis B that undergo drug therapy, and draw conclusions about the relation between drugs, immune activation, and loss of e-Antigen. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/53957 |
Date | 29 June 2015 |
Creators | Saul, April Leigh |
Contributors | Mathematics, Ciupe, Stanca M., Zietsman, Lizette, Chung, Matthias |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds