Return to search

Generalized Navier-Stokes equations for active turbulence

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 211-227). / Recent experiments show that active fluids stirred by swimming bacteria or ATPpowered microtubule networks can exhibit complex flow dynamics and emergent pattern scale selection. Here, I will investigate a simplified phenomenological approach to 'active turbulence', a chaotic non-equilibrium steady-state in which the solvent flow develops a dominant vortex size. This approach generalizes the incompressible Navier-Stokes equations by accounting for active stresses through a linear instability mechanism, in contrast to externally driven classical turbulence. This minimal model can reproduce experimentally observed velocity statistics and is analytically tractable in planar and curved geometry. Exact stationary bulk solutions include Abrikosovtype vortex lattices in 2D and chiral Beltrami fields in 3D. Numerical simulations for a plane Couette shear geometry predict a low viscosity phase mediated by stress defects, in qualitative agreement with recent experiments on bacterial suspensions. Considering the active analog of Stokes' second problem, our numerical analysis predicts that a periodically rotating ring will oscillate at a higher frequency in an active fluid than in a passive fluid, due to an activity-induced reduction of the fluid inertia. The model readily generalizes to curved geometries. On a two-sphere, we present exact stationary solutions and predict a new type of upward energy transfer mechanism realized through the formation of vortex chains, rather than the merging of vortices, as expected from classical 2D turbulence. In 3D simulations on periodic domains, we observe spontaneous mirror-symmetry breaking realized through Beltrami-like flows, which give rise to upward energy transfer, in contrast to the classical direct Richardson cascade. Our analysis of triadic interactions supports this numerical prediction by establishing an analogy with forced rigid body dynamics and reveals a previously unknown triad invariant for classical turbulence. / by Jonasz Słomka. / Ph. D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/117861
Date January 2018
CreatorsSłomka, Jonasz
ContributorsJörn Dunkel., Massachusetts Institute of Technology. Department of Mathematics., Massachusetts Institute of Technology. Department of Mathematics.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format227 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0019 seconds