The reconstruction of a function and its derivative from a set of measured samples is a fundamental operation in visualisation. Multiresolution techniques, such as wavelet signal processing, are instrumental in improving the performance and algorithm design for data analysis, filtering and processing. This dissertation explores the possibilities of combining traditional multiresolution analysis and processing features of wavelets with the design of appropriate filters for reconstruction of sampled data. On the one hand, a multiresolution system allows data feature detection, analysis and filtering. Wavelets have already been proven successful in these tasks. On the other hand, a choice of discrete filter which converges to a continuous basis function under iteration permits efficient and accurate function representation by providing a “bridge” from the discrete to the continuous. A function representation method capable of both multiresolution analysis and accurate reconstruction of the underlying measured function would make a valuable tool for scientific visualisation. The aim of this dissertation is not to try to outperform existing filters designed specifically for reconstruction of sampled functions. The goal is to design a wavelet filter family which, while retaining properties necessary to preform multiresolution analysis, possesses features to enable the wavelets to be used as efficient and accurate “building blocks” for function representation. The application to visualisation is used as a means of practical demonstration of the results. Wavelet and visualisation filter design is analysed in the first part of this dissertation and a list of wavelet filter design criteria for visualisation is collated. Candidate wavelet filters are constructed based on a parameter space search of the BC-spline family and direct solution of equations describing filter properties. Further, a biorthogonal wavelet filter family is constructed based on point and average interpolating subdivision and using the lifting scheme. The main feature of these filters is their ability to reconstruct arbitrary degree piecewise polynomial functions and their derivatives using measured samples as direct input into a wavelet transform. The lifting scheme provides an intuitive, interval-adapted, time-domain filter and transform construction method. A generalised factorisation for arbitrary primal and dual order point and average interpolating filters is a result of the lifting construction. The proposed visualisation filter family is analysed quantitatively and qualitatively in the final part of the dissertation. Results from wavelet theory are used in the analysis which allow comparisons among wavelet filter families and between wavelets and filters designed specifically for reconstruction for visualisation. Lastly, the performance of the constructed wavelet filters is demonstrated in the visualisation context. One-dimensional signals are used to illustrate reconstruction performance of the wavelet filter family from noiseless and noisy samples in comparison to other wavelet filters and dedicated visualisation filters. The proposed wavelet filters converge to basis functions capable of reproducing functions that can be represented locally by arbitrary order piecewise polynomials. They are interpolating, smooth and provide asymptotically optimal reconstruction in the case when samples are used directly as wavelet coefficients. The reconstruction performance of the proposed wavelet filter family approaches that of continuous spatial domain filters designed specifically for reconstruction for visualisation. This is achieved in addition to retaining multiresolution analysis and processing properties of wavelets.
Identifer | oai:union.ndltd.org:ADTP/220964 |
Date | January 2000 |
Creators | Cena, Bernard Maria |
Publisher | University of Western Australia. Dept. of Computer Science |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Bernard Maria Cena, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0029 seconds