For every natural number m there exists a ring R with a completely prime ideal P so that there are exactly m non-isomorphic indecomposable injective right R-modules with P as associated prime ideal.
Identifer | oai:union.ndltd.org:DUETT/oai:DUETT:duett-05272002-093335 |
Date | 27 May 2002 |
Creators | Toerner, Guenter & Brungs, Hans-Heinrich |
Contributors | none |
Publisher | Gerhard-Mercator-Universitaet Duisburg |
Source Sets | Dissertations and other Documents of the Gerhard-Mercator-University Duisburg |
Language | German |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-05272002-093335/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. Hiermit erteile ich der Universitaet Duisburg das nicht-ausschliessliche Recht unter den unten angegebenen Bedingungen, meine Dissertation, Staatsexamens- oder Diplomarbeit, meinen Forschungs- oder Projektbericht zu veroeffentlichen und zu archivieren. Ich behalte das Urheberrecht und das Recht das Dokument zu veroeffentlichen und in anderen Arbeiten weiterzuverwenden. |
Page generated in 0.0109 seconds