Return to search

Involutions of the Mathieu groups

The five Mathieu permutation groups M₁₁, M₁₂M₂₂,M₂₃ and M₂₄ are constructed and the involutions (elements of order two) of these groups are classified according to the number of letters they fix. It is shown that in M₁₂ ah involution fixes no letters or four letters, while in M₂₄ an involution fixes zero or eight letters. It is also shown that in each of the Mathieu groups, all the irregular involutions are conjugate and that in M₁₂ all the regular involutions are conjugate. The orders of the centralizers of the involutions are calculated and it is shown that no regular involution lies in the centre of a 2-Sylow subgroup.
Most of the results are obtained by calculating directly the form a permutation must take in order to have a certain property and then finding one or all the permutations of this form. / Science, Faculty of / Mathematics, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/37943
Date January 1966
CreatorsFraser, Richard Evan James
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0018 seconds