Malgré une vaste littérature concernant les propriétés structurelles, électroniques et ther- modynamiques du silicium amorphe (a-Si), la structure microscopique de ce semi-cond- ucteur covalent échappe jusqu’à ce jour à une description exacte. Plusieurs questions demeurent en suspens, concernant par exemple la façon dont le désordre est distribué à travers la matrice amorphe : uniformément ou au sein de petites régions hautement déformées ? D’autre part, comment ce matériau relaxe-t-il : par des changements homo- gènes augmentant l’ordre à moyenne portée, par l’annihilation de défauts ponctuels ou par une combinaison de ces phénomènes ?
Le premier article présenté dans ce mémoire propose une caractérisation des défauts de coordination, en terme de leur arrangement spatial et de leurs énergies de formation. De plus, les corrélations spatiales entre les défauts structurels sont examinées en se ba- sant sur un paramètre qui quantifie la probabilité que deux sites défectueux partagent un lien. Les géométries typiques associées aux atomes sous et sur-coordonnés sont extraites du modèle et décrites en utilisant les distributions partielles d’angles tétraédriques. L’in- fluence de la relaxation induite par le recuit sur les défauts structurels est également analysée.
Le second article porte un regard sur la relation entre l’ordre à moyenne portée et la relaxation thermique. De récentes mesures expérimentales montrent que le silicium amorphe préparé par bombardement ionique, lorsque soumis à un recuit, subit des chan- gements structuraux qui laissent une signature dans la fonction de distribution radiale, et cela jusqu’à des distances correspondant à la troisième couche de voisins.[1, 2] Il n’est pas clair si ces changements sont une répercussion d’une augmentation de l’ordre à courte portée, ou s’ils sont réellement la manifestation d’un ordonnement parmi les angles dièdres, et cette section s’appuie sur des simulations numériques d’implantation ionique et de recuit, afin de répondre à cette question. D’autre part, les corrélations entre les angles tétraédriques et dièdres sont analysées à partir du modèle de a-Si. / Based on a detailed study of the radial distribution function (RDF) of a model for amorphous sili- con (a-Si), we address the relation between short-range rearrangements and an increase in medium- range order induced by thermal relaxation. Recent experimental measurements have shown that a small peak appears in the RDF around 4.7 Å upon annealing, along with other subtle changes, and this is attributed to ordering among the dihedral angles. We show that, although this is a possible explanation, an increase in short-range order (up to second neighbors) is not only necessary for these changes to occur, but could also be their sole cause. To clarify the nature of disorder in the amorphous system, correlations among dihedral and tetrahedral angles are examined. The bivariate probability distribution of these two variables reveals small correlations between dihedral and te- trahedral angles, associated with the staggered and eclipsed conformations. In the first case, bond angles around 112.5◦ are favored vs. 120◦ in the second case. Bond angles between 95◦ and 100◦ are less probable in both conformations. On another issue, the nature of disorder in amorphous silicon (a-Si) is explored by investigating the spatial ar- rangement and energies of coordination defects in a numerical model. Spatial correlations between structural defects are examined on the basis of a parameter that quantifies the probability for two sites to share a bond. Pentacoordinated atoms are found to be the dominant coordination defects. They show a tendency to cluster, and about 17% of them are linked through three-membered rings. As for tricoordinated sites, they are less numerous, and tend to be distant by at least two bond lengths. Typical local geometries associated to under and overcoordinated atoms are extracted from the model and described using partial bond angle distributions. An estimate of the formation energies of structural defects is provided. Using molecular-dynamics calculations, we simulate the implantation of high-energy atoms in the initial structure in order to study the effect of relaxation on the coordination defects and their environments.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/12465 |
Date | 12 1900 |
Creators | Dagenais, Paule |
Contributors | Lewis, Laurent J., Roorda, Sjoerd |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0022 seconds