California red scale (CRS), Aonidella aurantii, is an increasingly injurious insect pest for the California citrus industry due to insecticide resistance, changing weather patterns, and shifting trade regulations. The presence of the insect on fruit, damages the rind of the fruit and high populations can cause dieback of branches as well as lower yields. Pheromone mating disruption of CRS has the potential to alleviate population control concerns and reduce insecticide use. The efficacy of the pheromone mating disruption technique for pest management of CRS was determined using the products CheckMate® CRS and Semios CRS Plus. CheckMate® CRS was evaluated over two years in eight 8.1-ha blocks and two 16.2-ha blocks, and in each block half the acreage was untreated and half treated. Semios CRS Plus was evaluated over one year in four 8.1-ha blocks and one 16.2-ha block, and in each block half the acreage was untreated and half treated. Disruption efficacy was determined by male flight trap counts, leaf and twig infestation percentages, and fruit infestation at the end of the season. For CheckMate® CRS® a large reduction in male flight trap catches were recorded in all blocks over both years. Statistically significant lower leaf and twig infestations were observed between for the CheckMate® CRS compared to the control areas in all 10 blocks over the 2018 and 2019 seasons for both the August and November sampling. Statistically significant reductions in the % of fruit infested with 10 or more scales were observed for the CheckMate® CRS treatment compared to the control in 9 of the 10 blocks with 7 of 10 blocks having 90% to 97% reduction. No significant reductions in male flight trap catches or the August leaf and twig infestation were observed for Semios CRS Plus. Due to a lack of efficacy in the August leaf and twig sample in 2018 the trials were canceled and not replicated in 2019. The results of the study indicated pheromone mating disruption using CheckMate® CRS, can be an effective method to reduce California red scale populations.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3561 |
Date | 01 December 2019 |
Creators | Leonard, Joel Timothy |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0017 seconds