Return to search

Ekonomisk optimering av en vätgasanläggning med sektorkoppling till ett fjärrvärmesystem / Economic optimization of a hydrogen plant with sector coupling to a district heating system

Ökad mänsklig aktivitet och global folkmängd har lett till ökat energibehov där största andelen av energin är från fossila bränslen. Vätgas ses som en effektiv energibärare som kan produceras med förnyelsebara resurser och ersätta fossila bränslen. Vätgas producerad med förnyelsebara resurser är dock fortfarande dyrt jämfört med produktion från fossila bränslen.Det finns få tidigare studier som har studerat utnyttjandet av spillvärme från vätgasanläggningar och vilken påverkan det kan ha på den ekonomiska lönsamheten.Den här studien som sker i samarbete med Research Institutes of Sweden (RISE), syftar till attoptimera en vätgasanläggning, med ett på förhand definierat vätgasbehov, utifrån ett ekonomiskt perspektiv och se om en sektorkoppling till ett fjärrvärmenät kan förbättra det ekonomiska resultatet. Sektorkoppling innebär i den här studien att spillvärme skickas från vätgasanläggningen in till fjärrvärmenätet. Systemet som studeras består utav en elektrolysör, en bränslecell och ett vätgaslager. Systemet är beskrivet så att i första hand producera en förutbestämd mängd vätgas som ska användas till fordonsbränsle. Därutöver kan systemet utnyttjas för elenergilagring via vätgaslagring, om det visar sig ekonomiskt fördelaktigt. Målen är att optimera fram ett pris för vad vätgasen behöver kosta för att anläggningen ska nå break-even, dimensionera elektrolys, vätgaslager och bränslecell utefter optimal drift ochstudera vad som påverkar den optimala driften av anläggningen.Metoden som används för att optimera vätgasanläggningen är linjärprogrammering i programmet MATLAB. I optimeringen ska den lägsta möjliga nettokostnaden (eventuella högsta nettointäkten) för systemet beräknas. Alla kostnader och intäkter beskrivas linjärt, sedan definieras alla variabler som påverkar kostnader och intäkter. Variablerna kommer i sin tur att bero på villkor, samt linjära likheter och olikheter som begränsar hur små eller stora värden de får anta för att påverka resultatet. Optimeringen sker över en tidsperiod på 1 år och med tidssteget två timmar. Historiskt elpris för 2021 SE3 användes i studien. Variationen i elpriset är svår att mäta, därför skapades även ett eget elpris som inte är så komplext för att närmare kunna studera variationens påverkan.Resultaten visar att vätgasen ska säljas för ungefär 36,6 kr/kg för att nå break-even när priset optimeras och spillvärmen inte utnyttjas. Utnyttjandet av spillvärme kan sänka priset med 1,6 - 2,5 kr/kg beroende på om spillvärmen utnyttjas delar av eller hela året. Elektrolysör och vätgaslager bör dimensioneras beroende på ett fördefinierat vätgasbehov, enligt dimensionsfaktorerna 4,9 [MW/(ton vätgas/dag)] respektive 1,4 [ton/(ton vätgas/dag)].Värmeeffekten som kan utnyttjas från vätgasanläggningen kan dimensioneras beroende på ett fördefinierat vätgasbehov, enligt dimensionsfaktorn 0,9 [MW/(ton vätgas/dag)]. Resultatet visar trender på att elpriset påverkar storleken på elektrolysör, vätgaslager och även vilka timmar som elektrolysen är aktiv. Att dimensionera anläggningen som funktion av elpriset har visat sig vara en komplex fråga, och fler studier behövs inom det området. En trend visar att utnyttjandet av spillvärme har en mindre påverkan på vätgaspriset vid högre verkningsgrad på elektrolysen, och ökad påverkan vid lägre verkningsgrad. Spillvärme som ersätter värme från fjärrvärmepanna minskar utsläppen med ungefär 38 kg CO2e/MWh beror på fjärrvärmeproducentens befintliga pannor/bränslen. För investerarna betyder resultaten en riktlinje för priset på vätgasen, uppskattad dimensionering av anläggningen, att det i praktiken aldrig är lönsamt med bränslecell och en inblick i det ekonomiska värdet av spillvärmen. För fjärrvärmebolaget betyder resultaten minskade utsläpp av koldioxidekvivalenter, en extravärmekälla och möjligen minskade kostnader. För energisystemet i stort betyder resultaten att den höga variationen på elpriset kan utnyttjas för att producera vätgas, att det gröna vätgaspriset kan sjunka från dagens nivåer och att spillvärmen kan bidra till ett effektivare energisystem. / Increased human activity and global population have led to an increased energy demand, with most of the energy coming from fossil fuels. Hydrogen is seen as an efficient energy carrier that can be produced using renewable resources and replace fossil fuels. However, hydrogen produced from renewable resources is still expensive compared to production from fossil fuels. There have been few previous studies that have examined the utilization of waste heat from hydrogen facilities and the impact it can have on economic profitability.This study, conducted in collaboration with Research Institutes of Sweden (RISE), aims to optimize a hydrogen production facility, with a predefined hydrogen demand, from an economic perspective and assess whether a sector coupling to a district heating network can improve the economic outcome. In this study, sector coupling means that waste heat is sent from the hydrogen facility to the district heating network. The hydrogen plant consists of an electrolyzer, a fuel cell, and a hydrogen storage. The system is designed to primarily produce a predetermined amount of hydrogen to be used as vehicle fuel. Additionally, the system can be used for electrical energy storage through hydrogen storage if it proves to be economically advantageous. The objectives are to optimize the price at which hydrogen needs to be sold for the facility to break even, sizing the electrolyzer, hydrogen storage, and fuel cell based on optimal operation, and study the factors that affect the optimal operation of the facility.The method used to optimize the hydrogen facility is linear programming in the MATLAB program. The optimization aims to calculate the lowest possible net cost (or highest net income) for the system. All costs and revenues are described linearly, and then all variables that affect costs and revenues are defined. These variables, in turn, depend on conditions as well as linear equalities and inequalities that restrict the values, they can take to influence the result. The optimization is carried out over a period of 1 year with a time step of two hours. Historical electricity prices for 2021 SE3 were used in the study. The variation in electricity prices is difficult to measure, so a simplified electricity price was also created to study the impact of the variation more closely.The results show that the hydrogen should be sold for approximately 36.6 SEK/kg to break even when the price is optimized, and waste heat is not utilized. The utilization of waste heat can reduce the price by 1.6-2.5 SEK/kg depending on whether the waste heat is utilized for parts or the entirety of the year. The electrolyzer and hydrogen storage should be dimensioned based on a predefined hydrogen demand, according to the factors of 4.9 MW/(ton of hydrogen/day) and 1.4 ton/(ton of hydrogen/day), respectively. The heat output that can be utilized from the hydrogen facility can be dimensioned based on a predefined hydrogen demand, according to the factor of 0.9 MW/(ton of hydrogen/day). The results show trends indicating that the electricity price affects the size of the electrolyzer, hydrogen storage, andthe hours during which the electrolyzer is active. Dimensioning the facility as a function of the electricity price has proven to be a complex question, and further studies are needed in that area. One trend indicates that the utilization of waste heat has a smaller impact on the hydrogen price at higher electrolyzer efficiency and a greater impact at lower efficiency. Waste heat that replaces heat from a district heating boiler reduces emissions by approximately 38 kg CO2e/MWh, depending on the existing boilers/fuels of the district heating producer. For investors, the results provide guidelines for the price of hydrogen, estimated dimensioning of the facility, the practical non-profitability of fuel cells, and insights into the economic value of waste heat. For the district heating company, the results mean reduced emissions of carbon dioxide equivalents, an additional heat source, and possibly reduced costs For the Swedish energy system, the results imply that the high variation in electricity prices can be utilized to produce hydrogen, leading to a potential decrease in the price of green hydrogen compared to current levels. Additionally, the utilization of waste heat can contribute to a more efficient energy system. / HyCoGen

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-95582
Date January 2022
CreatorsAzrak, Johan
PublisherKarlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds