Return to search

[en] POROUS MEDIUM MODEL IN CONTACT WITH RESERVOIRS / [pt] MODELO EM MEIOS POROSOS EM CONTATO COM RESERVATÓRIOS

[pt] A primeira parte da dissertação é dedicada ao estudo do modelo em meios porosos em contato com reservatórios e à obtenção, heurística, da equação hidrodinâmica para esse modelo, com o intuito de iniciar o estudo do limite hidrodinâmico que garante que a evolução da densidade de partículas desse modelo é descrita pela solução fraca da equação hidrodinâmica, nomeadamente, a equação em meios porosos com condições de Dirichlet. A segunda parte da dissertação é dedicada ao estudo do método da representação matricial, a chamada matriz ansatz, que será utilizado para caracterizar as medidas estacionárias de sistemas de partículas fora do equilíbrio. Usaremos o processo de exclusão simples simétrico como motivação para apresentar as técnicas utilizadas nesse método. Munido dessas técnicas conseguimos obter pela primeira vez a função de correlação de segunda ordem para o processo de exclusão simples simétrico em contato com reservatórios lentos, e além disso, conseguimos obter informação do estado estacionário do modelo em meios porosos em contato com reservatórios. / [en] The first part of the dissertation is dedicated to the study of the porous medium model in contact with reservoirs and to, heuristically, obtain the hydrodynamic equation for this model, with the pursuit of starting the study of the hydrodynamic limit which guarantees that the evolution of the density of particles of this model is described by the weak solution of the hydrodynamic equation, namely, the porous medium equation with Dirichlet boundary conditions. The second part of the dissertation is dedicated to the study of the matrix representation method, the so-called matrix ansatz, which will be used to characterize the stationary measures of particle systems out of equilibrium. For warming up, we will use the symmetric simple exclusion process as a toy model to present the techniques used in this method. With those techniques, for the first time we obtained the second order correlation function for the symmetric simple exclusion process in contact with slow reservoirs, and in addition, we were able to obtain information about the steady state of the porous medium model in contact with reservoirs.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:31060
Date17 August 2017
CreatorsRENATO RICARDO DE PAULA
ContributorsSIMON RICHARD GRIFFITHS
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.002 seconds