Return to search

Explorando o tratamento matricial para uma introdução aos números complexos / Exploring the matrix treatment for an introduction to complex numbers

Made available in DSpace on 2015-03-26T14:00:05Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1325938 bytes, checksum: ba2b1ba5155f96ded4e4a609c269689f (MD5)
Previous issue date: 2013-04-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The objective of this work is to give a more geometric approach in the introduction of complex numbers in order to make them more compreenssíveis and eliminating the idea of strange numbers and difficult to understand. To achieve this far will be a study of the properties of matrices 2x2 operative type [ a −b b a ] ,with a, b ϵR, reaching the result that these matrices form one body. Then associated with such matrices to points on the plane R2. From the result of this association gets to multiply a vector by a matrix of this type corresponds to a spin efeturar and multiply it by a scalar. From then makes two-way matching between the matrices and complex numbers so that all properties studied in the previous section remain true. As a result of this correspondence we obtain that multiplying by i2 corresponds to a spin 180o , I.e., keep the direction and reverse direction which corresponds to multiplying by (−1), I.e., i2 = −1 . Thus one arrives at a result which is usually presented to students in the introduction of complex numbers but with a meaning that once lacked. Then did a study of compliance and deformation of transformations of variables through functions complexas.Com this approach is facilitated understanding by students of their same concepts and the same function, to conclude we present a practical situation in which it uses the complexs numbers. / O objetivo deste trabalho é dar um enfoque mais geométrico na introdução dos números complexos, de forma a torná-los mais compreensíveis e eliminando a ideia de números estranhos e de difícil compreensão.Para alcançar tal objetivo far-se-á um estudo das propriedades operatórias das matrizes 2x2 do tipo [ a −b b a ] , com a, b ϵR, chegando ao resultado de que tais matrizes formam um corpo. Em seguida associa-se tais matrizes a pontos do plano R2. A partir desta associação obtém o resultado que multiplicar um vetor por uma matriz deste tipo corresponde a efeturar um giro e multiplicá-lo por um escalar. A partir daí faz a correspondência biunívoca entre as matrizes e os números complexos de forma que todas as propriedades estudadas no item anterior permanecem verdadeiras. Como resultado desta correspondência obtemos que multiplicar por i2 corresponde a um giro de 180o , isto é, manter a direção e inverter o sentido o que corresponde a multiplicar por (−1), ou seja que i2 = −1. Desta forma chega-se ao resultado que normalmente é apresentado aos alunos na introdução dos números complexos porém com um significado que outrora não possuía. A seguir fez um estudo da conformidade e deformação das transformações através de funçõeoes de variáveis complexas.Com esta abordagem fica facilitada a compreensão por parte dos alunos dos seus conceitos e mesmo a função dos mesmos, para concluir apresentamos uma situação prática em que se utiliza os números complexos.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:123456789/5883
Date10 April 2013
CreatorsGomes, Márcio Roberto
ContributorsPedroso, Kennedy Martins, Ferreira, Ana Cristina, Entringer, Ariane Piovezan
PublisherUniversidade Federal de Viçosa, Mestrado Profissional em Matemática em Rede Nacional, UFV, BR, Ensino de Matemática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFV, instname:Universidade Federal de Viçosa, instacron:UFV
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds