Return to search

Extremality, symmetry and regularity issues in harmonic analysis

In this Ph. D. thesis we discuss four different problems in analysis: (a) sharp inequalities related to the restriction phenomena for the Fourier transform, with emphasis on some Strichartz-type estimates; (b) extremal approximations of exponential type for the Gaussian and for a class of even functions, with applications to analytic number theory; (c) radial symmetrization approach to convolution-like inequalities for the Boltzmann collision operator; (d) regularity of maximal operators with respect to weak derivatives and weak continuity. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/7474
Date26 May 2010
CreatorsCarneiro, Emanuel Augusto de Souza
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0019 seconds