Return to search

Εκτίμηση των παραμέτρων της διπαραμετρικής εκθετικής κατανομής από ένα διπλά διακεκομμένο δείγμα

Η παρούσα μεταπτυχιακή διατριβή εντάσσεται ερευνητικά στην περιοχή της Στατιστικής Θεωρίας Αποφάσεων και ειδικότερα στην εκτίμηση των παραμέτρων στο μοντέλο της διπαραμετρικής εκθετικής κατανομής με παράμετρο θέσης μ και παράμετρο κλίμακος σ. Θεωρούμε ένα δείγμα n τυχαίων μεταβλητών, καθεμία από τις οποίες ακολουθεί την διπαραμετρική εκθετική κατανομή. Λογοκρίνουμε κάποιες αρχικές παρατηρήσεις και έστω ότι τερματίζουμε το πείραμά μας πριν αποτύχουν όλες οι συνιστώσες. Τότε προκύπτει ένα διπλά διακεκομμένο δείγμα διατεταγμένων παρατηρήσεων. Η εκτίμηση των παραμέτρων της διπαραμετρικής εκθετικής κατανομής, γίνεται από το συγκεκριμένο δείγμα.
Πρώτα μελετάμε κάποιες βασικές έννοιες της Στατιστικής και της Εκτιμητικής και βρίσκουμε εκτιμητές για τις παραμέτρους. Πιο συγκεκριμένα, βρίσκουμε αμερόληπτο εκτιμητή ελάχιστης διασποράς, εκτιμητή μέγιστης πιθανοφάνειας, εκτιμητή με την μέθοδο των ροπών και τον βέλτιστο αναλλοίωτο εκτιμητή σε συγκεκριμένη κλάση, αντίστοιχα και για τις δύο παραμέτρους. Σαν βελτίωση των προηγούμενων εκτιμητών, ακολουθούν οι εκτιμητές τύπου Stein και, ολοκληρώνοντας, ασχολούμαστε με πρόβλεψη κατά Bayes για μια μελλοντική παρατήρηση / The present master thesis deals with the estimation of the location parameter μ and the scale parameter σ of the two-parameter exponential distribution. A sample n of random variables from the two-parameter exponential distribution is assumed. Part of the initial variables is censored and the experiment is terminated before all the components fail. A doubly censored sample emerges from which the two-parameter exponential distribution's parameters are estimated.
First of all, basic Statistics' concepts are studied in order to estimate the parameters. More specifically, the Minimum Variance Unbiased Estimator (MVUE), the Maximum Likelihood Estimator (MLE), the estimator based on the Method of Moments and the best affine equivariant estimator are computed for both the parameters. To improve the previous estimators, the Stein method is used and to conclude the Bayes prediction is used for future observation

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/4019
Date05 January 2011
CreatorsΔασκαλάκη, Ιωάννα
ContributorsΠετρόπουλος, Κωνσταντίνος, Daskalaki, Ioanna, Κουρούκλης, Σταύρος, Τσάντας, Νικόλαος, Πετρόπουλος, Κωνσταντίνος
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0
RelationΗ ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0021 seconds