Return to search

Magnetic field effects in chemical systems

Magnetic fields influence the rate and/or yield of chemical reactions that proceed via spin correlated radical pair intermediates. The field of spin chemistry centres around the study of such magnetic field effects (MFEs). This thesis is particularly concerned with the effects of the weak magnetic fields B₀ ~ 1mT relevant in the ongoing debates on the mechanism by which animals sense the geomagnetic field and on the putative health effects of environmental electromagnetic fields. Relatively few previous studies have dealt with such weak magnetic fields. This thesis presents several new theoretical tools and applies them to interpret experimental measurements. Chapter 1 surveys the development and theory of spin chemistry. Chapter 2 introduces the use of Tikhonov and Maximum Entropy Regularisation methods as a new means of analysing MARY field effect data. These are applied to recover details of the diffusive motion of reacting pyrene and N,N-dimethylaniline radicals. Chapter 3 gives a fresh derivation and appraisal of an approximate, semiclassical approach to MFEs. Monte Carlo calculations allow the elucidation of several "rules of thumb" for interpreting MFE data. Chapter 4 discusses recent optically-detected zero-field EPR measurements, adapting the gamma-COMPUTE algorithm from solid state NMR for their interpretation. Chapter 5 explores the role of RF polarisation in producing MFEs. The breakdown in weak fields of the familiar rotating frame approximation is analysed. Chapter 6 reviews current knowledge and landmark experiments in the area of animal magnetoreception. The origins of the sensitivity of European robins Erithacus rubecula to the Earth’s magnetic field are given particular attention. In Chapter 7, Schulten and Ritz’s hypothesis that avian magnetoreception is founded on a radical pair mechanism (RPM) reaction is appraised through calculations in model systems. Chapter 8 introduces quantitative methods of analysing anisotropic magnetic field effects using spherical harmonics. Chapter 9 considers recent observations that European robins may sometimes be disoriented by minuscule RF fields. These are shown to be consistent with magnetoreception via a radical pair with no (effective) magnetic nuclei in one of the radicals.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:442570
Date January 2007
CreatorsRodgers, Christopher T.
ContributorsHore, P. J. : Timmel, Christiane R.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:f5878b88-c5ba-4cbd-83af-857431aef66e

Page generated in 0.022 seconds