In this masterthesis I have rewied basic approaches to volatility estimating. These approaches are based on classical and Bayesian statistics. I have applied the volatility models for the purpose of volatility forecasting of a different foreign exchange (EURUSD, GBPUSD and CZKEUR) in the different period (from a second period to a day period). I formulate the models EWMA, GARCH, EGARCH, IGARCH, GJRGARCH, jump diffuison with constant volatility and jump diffusion model with stochastic volatility. I also proposed an MCMC algorithm in order to estimate the Bayesian models. All the models we estimated as univariate models. I compared the models according to Mincer Zarnowitz regression. The most successfull model is the jump diffusion model with a stochastic volatility. On the second place they were the GJR- GARCH model and the jump diffusion model with a constant volatility. But the jump diffusion model with a constat volatilit provided much more overvalued results.The rest of the models were even worse. From the rest the IGARCH model is the best but provided undervalued results. All these findings correspond with R squared coefficient.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:264689 |
Date | January 2015 |
Creators | Hrbek, Filip |
Contributors | Witzany, Jiří, Fičura, Milan |
Publisher | Vysoká škola ekonomická v Praze |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds