Thesis (MSc (Physics))--Stellenbosch University, 2008. / Nuclear physics can be applied in various ways to the study of neutron stars. This thesis reports on one such application, where the relativistic mean-field approximation has been employed
to calculate the equations of state of matter in the neutron star interior. In particular the equations of state of nuclear and neutron star matter of the NL3, PK1 and FSUGold parameter sets were derived. A survey of available literature on neutron stars is presented and we use the
derived equations of state to reproduce the properties of saturated nuclear matter as well as the mass-radius relationship of a static, spherical symmetric neutron star. Results are compared to published values of the properties of saturated nuclear matter and to available observational
data of the mass-radius relationship of neutron stars.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/2057 |
Date | 03 1900 |
Creators | Diener, Jacobus Petrus Willem |
Contributors | Van der Ventel, B. I. S., Hillhouse, G. C., Stellenbosch University. Faculty of Science. Dept. of Physics. |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 1847967 bytes, application/pdf |
Rights | Stellenbosch University |
Page generated in 0.0022 seconds