Return to search

BIFURCACOES SUCESSIVAS EM SISTEMAS DE DIMENSAO INFINITA / Bifurcations SUCCESSIVE SYSTEMS IN INFINITE DIMENSION

Com base em exemplos, nos fundamentos da Mecânica estatística e na teoria ergódiga, é dada uma definição de atrator como uma medida invariante. Vários resultados que corroboram esta definição são demostrados. Caos é relacionado à presença de um atrator com entropia métrica maior que zero. O papel dos expoentes de Lyapunov é analisado e é provado que um atrator caótica possui expoentes de Lyapunov positivos em quase todo ponto, e também que, se um atrator possui todos expoentes de Lyapunov estritamente negativos num conjunto de medida atratora maior que zero, então seu suporte é uma órbita periódica assintoticamente estável. / Here, a definition of an attractor as an invariant measure is given based on Ergodic Theory, foundations of Statistical Mechanics and some examples. Chaos is related to the presence of an attractor with metric entropy grater zero. It is proved that a chaotic attractor has positive Lyapunov exponents almost everywhere, and that, if an attractor has every Lyapunov exponents less than zero in a set of nonzero measure then the support set of the attractor is an asymptotic stable periodic orbit.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28092012-155809
Date27 June 1984
CreatorsOliveira, Cesar Rogerio de
ContributorsMalta, Coraci Pereira
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0023 seconds