Com base em exemplos, nos fundamentos da Mecânica estatística e na teoria ergódiga, é dada uma definição de atrator como uma medida invariante. Vários resultados que corroboram esta definição são demostrados. Caos é relacionado à presença de um atrator com entropia métrica maior que zero. O papel dos expoentes de Lyapunov é analisado e é provado que um atrator caótica possui expoentes de Lyapunov positivos em quase todo ponto, e também que, se um atrator possui todos expoentes de Lyapunov estritamente negativos num conjunto de medida atratora maior que zero, então seu suporte é uma órbita periódica assintoticamente estável. / Here, a definition of an attractor as an invariant measure is given based on Ergodic Theory, foundations of Statistical Mechanics and some examples. Chaos is related to the presence of an attractor with metric entropy grater zero. It is proved that a chaotic attractor has positive Lyapunov exponents almost everywhere, and that, if an attractor has every Lyapunov exponents less than zero in a set of nonzero measure then the support set of the attractor is an asymptotic stable periodic orbit.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-28092012-155809 |
Date | 27 June 1984 |
Creators | Cesar Rogerio de Oliveira |
Contributors | Coraci Pereira Malta, Francisco Antonio Bezerra Coutinho, Mario Jose de Oliveira |
Publisher | Universidade de São Paulo, Física, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds