Return to search

Mechanical design of a jumping and self-balancing monopedal robot

Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 59-60). / This project involved the design and fabrication of a self-balancing monopedal robot which is intended to be used as a platform for physically validating simulated risk network based control analysis. A precomputed risk network allows a robot to evaluate the risk that an action will lead to an imminent fall or lead to a state from which the robot will eventually fall after several jumps.' The physical implementation of the simulated robot will allow the theoretical boundaries of safety to be validated. If validated, risk matrix analysis will allow a system to be modeled such that the controller can modify control inputs which would lead falls. The results of physical testing will be used to refine the simulated model. The robot was designed to be as simple as possible while still being capable of operating in three dimensions to study hybrid dynamics and underactuated locomotion. A mechanism with a direct kinematic relation to the output along with a static contact area was designed to allow the ground force profiles to be accurately controlled. In order to utilize the risk network, the force applied by the foot as well as the robot's take-off angle and rate of angular rotation at take-off are key parameters which must be measured and controlled. The robot was be optimized to precisely control these parameters rather than to achieve the longest or highest jump possible as is the objective of other studies. / by Evan Brown. / S.B.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/119961
Date January 2018
CreatorsBrown, Evan (Evan C.)
ContributorsSangbae Kim., Massachusetts Institute of Technology. Department of Mechanical Engineering., Massachusetts Institute of Technology. Department of Mechanical Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format60 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0019 seconds