Return to search

Horizontal non-contact slumping of flat glass

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 99). / This paper continues the work of M. Akilian and A. Husseini on developing a noncontact glass slumping/shaping process. The shift from vertical slumping to horizontal slumping is implemented and various technologies required for the horizontal slumping process are developed. In the horizontal slumping process, a thin sheet of glass is placed in between two horizontal ceramic air bearings with a bearing to glass gap of about 50 pm, and the assembly is heated up to 600*C. The glass is unconstrained in the horizontal plane and must be positioned without any solid contact. Specifically, the technologies developed are: an optical distance sensor for positioning of the glass, glass position control via air bearing fluid shear force and tilt of device, and device mechanisms for operation in 600*C. Glass was slumped horizontally with bearing-to-glass gaps of >50 [mu]m, 36±2.5 pm, and 30.5±2.5 [mu]m. The best flatness achieved was 6.7/3.6+0.5 [mu]m for front/back of the glass sheet, with a gap of 36+2.5 [mu]pm. It was discovered that 600*C is hotter than necessary and that 550*C is still too hot for optimal slumping conditions. In addition, an important shift is made from using an oven, which heats the entire device, to using in-line pipe heaters, which supply heated air. This allows for much quicker heating and cooling times, which decreases slumping time to less than 30 minutes (10 minutes heating, 5 minutes slumping, 10 minutes cooling). / by Edward Sung. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/81717
Date January 2013
CreatorsSung, Edward, S.M. Massachusetts Institute of Technology
ContributorsMark Schattenburg., Massachusetts Institute of Technology. Department of Mechanical Engineering., Massachusetts Institute of Technology. Department of Mechanical Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format113 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0019 seconds