[pt] A falha mecânica conhecida como fadiga é caracterizada pela iniciação e/ou propagação de trincas, causada por forças variáveis. Suas metodologias tradicionais calculam uma tensão elástica uniaxial equivalente que atua no componente, a fim de compará-la com os dados experimentais de comportamento mecânico do material do componente sob cargas uniaxiais. Esta hipótese pode levar a resultados não conservativos, por considerar que o material é igualmente sensível a tensões normais e cisalhantes, o que é falso em várias aplicações práticas. Portanto, dados torcionais e multiaxiais são necessários para melhor prever a vida em fadiga dos componentes. Para executar estes experimentos, o presente trabalho propõe uma variedade de projetos de componentes e metodologias de montagem para que se possa usar em uma máquina de tração-torção Instron 8874 uma garra hidráulica originalmente projetada para uma máquina tração pura Instron 8501. É proposto um método simplificado para estimar, por controle de deslocamento, as propriedades de fadiga de baixo ciclo em cisalhamento (gama)N, evitando assim a necessidade de usar equipamentos caros e diferentes tipos de corpos de prova. Este método é usado para caracterização das ligas Aço SAE 1020 e Alumínio 6351-T6 e os dados levantados são comparados com as propriedades medidas de fadiga de baixo ciclo em tração (epsilon)N, identificando assim se o material é mais sensível a tensões normais ou cisalhantes. Um programa numérico é usado para ajustar as curvas (epsilon)N e (gama)N nos dados experimentais, e seus procedimentos de implementação são discutidos. Por fim, são propostos e calibrados modelos de fadiga multiaxial de plano crítico mais adequados para cada material testado, com base nos dados medidos. / [en] The mechanical failure known as fatigue is characterized by the formation and/or propagation of cracks caused by variable forces. Its traditional methodologies normally calculate an equivalent uniaxial tensile stress acting on the component, in order to compare it with the known experimental mechanical behavior data of the component s material measured under uniaxial loads. This assumption can lead to non-conservative results because it considers the material to be equally sensitive to shear and tensile stresses, which is not true in a wide range of practical applications. Therefore, torsional and multiaxial experimental data is necessary to better predict the fatigue life of components. To execute those experiments, the present work proposes a variety of component designs and assembly methodologies to use on an Instron 8874 axial-torsional testing machine a hydraulic grip originally designed for an Instron 8501 uniaxial testing machine. Furthermore, a simplified method to estimate shear (gamma)N low-cycle fatigue properties via displacement-controlled experiments is proposed to avoid the need of using expensive equipment and different specimen designs, and used for characterization of SAE 1020 Steel and 6351-T6 Aluminum alloys. This data is compared with the measured tensile (epsilon)N low-cycle fatigue properties to identify if these materials are tensile or shear sensitive under multiaxial loading conditions. A numerical computing code is used to fit (epsilon)N and (gamma)N curves to the experimental data, and its implementation procedures are discussed. Finally, the most suitable critical-plane multiaxial fatigue models are proposed and calibrated for each material tested, based on the measured data.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:48821 |
Date | 30 June 2020 |
Creators | THIAGO ALMEIDA CUNHA |
Contributors | JAIME TUPIASSU PINHO DE CASTRO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0032 seconds