<p>Statistical Process Control (SPC) provides tools to monitor process quality and productivity. When coupled with closed loop control theory, SPC algorithms can be utilized to compensate for various error sources in stable, high volume, discrete part manufacturing processes. These error sources include environmental effects, tool wear, measurement, and material errors.</p> <p>Closed loop machining cells must be analyzed from both Quality and Manufacturing Engineering perspectives for efficient and successful implementation. Discrete, stochastic, time event manufacturing simulation is used to analyze process organization, data flow and control system performance. SPC and Engineering Process Control (EPC) control algorithms are compared using data gathered from a high volume machining process involving steel turned components with a critical machined surface.</p> / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/9171 |
Date | 09 1900 |
Creators | Perry, Brian |
Contributors | Veldhuis, S. C., Mechanical Engineering |
Source Sets | McMaster University |
Detected Language | English |
Type | thesis |
Page generated in 0.0021 seconds