A series of experiments are described which explore the relationship between biomechanical properties and the control of jaw movement in speech. This relationship is documented using kinematic analyses in conjunction with a mathematical model of jaw motion and direct measures of jaw stiffness. / In the first experiment, empirical and modeling studies were carried out to examine whether the nervous system compensates for naturally occurring forces acting on the jaw during speech. As subjects walk or run, loads to the jaw vary with the direction and magnitude of head acceleration. While these loads are large enough to produce a measurable effect on jaw kinematics, variation in jaw position during locomotion is shown to be substantially reduced when locomotion is combined with speech. This reduction in jaw motion is consistent with the idea that in speech, the control of jaw movement is adjusted to offset the effects of head acceleration. Results of simulation studies using a physiologically realistic model of the jaw provide further evidence that subjects compensate for the effects of self-generated loads by adjusting neural control signals. / A second experiment explores the idea that a principle mechanical property of the jaw---its spring-like behavior, or stiffness---might influence patterns of kinematic variation in speech movements. A robotic device was used to deliver mechanical perturbations to the jaw in order to quantify stiffness in the mid-sagittal plane. The observed stiffness patterns were non-uniform, with higher stiffness in the protrusion-retraction direction. Consistent with the idea that kinematic patterns reflect directional asymmetries in stiffness, a detailed relationship between jaw kinematic variability and stiffness was observed---kinematic variability was consistently higher under conditions in which jaw stiffness was low. Modeling studies suggested that the pattern of jaw stiffness is significantly determined by jaw geometrical properties and muscle force generating abilities. / A third experiment examines the extent to which subjects are able to alter the three-dimensional pattern of jaw stiffness in a task-dependent manner. Destabilizing loads were applied to the jaw in order to disrupt the ability of subjects to maintain a static jaw posture. Subjects adapted by increasing jaw stiffness in a manner that depended on the magnitude and, to a more limited extent, direction of the destabilizing load. The results support the idea that stiffness properties can be controlled in the jaw, and thus may play a role in regulating mechanical interactions in the orofacial system.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.84435 |
Date | January 2002 |
Creators | Shiller, Douglas M. |
Contributors | Ostry, David J. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Psychology.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001984845, proquestno: AAINQ88579, Theses scanned by UMI/ProQuest. |
Page generated in 0.002 seconds