The interplay between biochemical signals and mechanical processes during animal development is key for the formation of tissues and organs with distinct shapes and functions. An important step during the formation of many tissues is the formation of compartment boundaries which separate cells of different fates and functions. Compartment boundaries are lineage restrictions that are characterized by a straight morphology. Biochemical signaling across compartment boundaries induce the expression of morphogens in the cells along the boundaries. These morphogens then act at long-range to direct growth and patterning of the whole tissue. Compartment boundaries stabilize the position of morphogens and thereby contribute to proper tissue development.
The straight morphology of compartment boundaries is challenged by cell rearrangements caused by cell division and tissue reshaping. Physical mechanisms are therefore required to maintain the straight morphology of compartment boundaries. The anteroposterior (A/P) compartment boundary in the developing Drosophila melanogaster wing is established by biochemical signals. Furthermore, mechanical processes are required to maintain the straight shape of the A/P boundary. Recent studies show that mechanical tension mediated by actomyosin motor proteins is increased along the A/P boundary.
However, it was not understood how biochemical signals interact with mechanical processes to maintain the A/P boundary. Here I provide the first evidence that Hedgehog signaling regulates mechanical tension along the A/P boundary. I was able to show that differences in Hedgehog (Hh) signal transduction activity between the anterior and posterior compartments are necessary and sufficient to maintain the straight shape of the A/P boundary, which is crucial for patterning and growth of the adult wing. Moreover, differences in Hh signal transduction activity are necessary and sufficient for the increase in mechanical tension along the A/P boundary.
In addition, differences in Hh signal transduction activity are sufficient to generate smooth borders and to increase mechanical tension along ectopic interfaces. Furthermore, the differential expression of the transmembrane protein Capricious is sufficient to increase mechanical tension along ectopic interfaces. It was previously suggested that mechanical tension is generated by an actomyosin-cable through which the increase in mechanical tension is transmitted between the junctions along the A/P boundary. Here I show that mechanical tension is generated locally at each cell bond and not transmitted between junctions by an actomyosin cable. My results provide new insights for our understanding of the interplay between biochemical signals and mechanical processes during animal development.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:28235 |
Date | 04 August 2014 |
Creators | Rudolf, Katrin |
Contributors | Dahmann, Christian, Jülicher, Frank, Technische Universität |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds