Return to search

Two new distinct mechanisms drive epithelial folding in Drosophila wing imaginal discs

Epithelial folding is an important morphogenetic process that is essential in transforming simple sheets of cells into complex three-dimensional tissues and organs during animal development (Davidson, 2012). Epithelial folding has been shown to rely on constriction forces generated by the apical actomyosin network (Martin et al., 2009; Roh-Johnson et al., 2012; Sawyer et al., 2010). However, the contributions of mechanical forces acting along lateral and basal cell surfaces to epithelial folding remain poorly understood.

Here we combine live imaging with force measurements of epithelial mechanics to analyze the formation of two epithelial folds in the Drosophila larval wing imaginal disc. We show that these two neighboring folds form via two distinct mechanisms. These two folds are driven either by decrease of basal tension or increase of lateral tension, none of them depends on apical constriction. In the first fold, a local decrease in extracellular matrix (ECM) density in prefold cells results in a reduction of mechanical tension on the basal cell surface, leading to basal expansion and fold formation. Consistent with that, a local reduction of ECM by overexpression of Matrix metalloproteinase II is sufficient to induce ectopic folding. In the second fold a different mechanism is at place. Here basal tension is not different with neighboring cells, but pulsed dynamic F-actin accumulations along the lateral interface of prefold cells lead to increased lateral tension, which drives cell shortening along the apical-basal axis and fold formation. In this thesis I described two distinct mechanisms driving epithelial folding, both basal decrease and lateral increase in tension can generate similar morphological changes and promote epithelial folding in the Drosophila wing discs. / Die Faltung von Epithelien ist ein wichtiger morphogenetischer Prozess, der die Entstehung komplexer, dreidimensionaler Gewebe und Organe aus einfachen Zellschichten ermöglicht (Davidson, 2012). Es ist bekannt, dass Kräfte erzeugt durch das apikale Aktomyosin-Netzwerk wichtig sind für die erfolgreiche Faltung von Epithelien (Martin et al., 2009; Roh-Johnson et al., 2012; Sawyer et al., 2010). Die Rolle von mechanischen Kräften, die entlang der lateralen und basalen Seite wirken, ist jedoch kaum verstanden.

Wir verbinden Lebendmikroskopie mit der Messung von mechanischen Eigenschaften, um die Entstehung von 2 Epithelfalten in den Imaginalscheiben von Drosophila zu verstehen. Wir können dadurch zeigen, dass die beiden Falten durch unterschiedliche Mechanismen entstehen. Sie entstehen entweder durch eine Verringerung der Spannung auf der basalen Seite oder durch eine Erhöhung der Spannung auf der lateralen Seite, aber keine von beiden entsteht durch zusammenziehende Kräfte auf der apikalen Seite. Die erste Falte entsteht durch eine lokale Verringerung der extrazellulären Matrix in den Vorläuferzellen, was zu einer Reduktion der Spannung auf der basalen Seite und zur Ausbildung der Falte führt. Die zweite Falte wird durch einen anderen Mechanismus ausgebildet. Hier ist nicht die Spannung auf der basalen Seite reduziert sondern dynamische Anreicherungen von F-Aktin auf der lateralen Seite resultieren in einer erhöhten lateralen Spannung, die zu einer Verkürzung der Zellen und damit zur Ausbildung einer Falte führt. In meiner Arbeit zeige ich 2 neue Mechanismen zur Entstehung von Epithelfalten auf, durch Absenken der Spannung auf der basalen oder Erhöhen auf der lateralen Seite.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:30926
Date22 March 2018
CreatorsSui, Liyuan
ContributorsDahmann, Christian, Jülicher, Frank, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0035 seconds