Return to search

Electrophysiological studies on the mechanism of action of the novel antiepileptic drug lacosamide

Lacosamide (LCM) is a new antiepileptic drug with a previously unknown mode of action. Using electrophysiological recording techniques in a range of in vitro preparations I have determined a mechanism of action of the new drug.
In a 4-aminopyridine model of tonic-clonic seizures in rat visual cortex in vitro, LCM stereoselectively reduced maximal frequency and duration of tonic activity with EC[50�s] of 71 and 41 [mu]M respectively. LCM (100 [mu]M) significantly reduced excitability in whole cell patch clamped neurons producing non-selective reduction in the incidence of excitatory/inhibitory postsynaptic currents (EPSCs; LCM: 46.1 � 15.5 %, P <0.01, n = 4, IPSCs; LCM: 24.9 � 9.6 %, P <0.01, n = 4) and block of spontaneous action potentials (EC₅₀ 61 [mu]M). The inhibitory effects of LCM did not result from changes in passive membrane properties (including resting membrane potential or input resistance) as assessed by application of voltage ramps between -70 to +20 mV. LCM did not mimic the effects of diazepam as an allosteric modulator of GABA[A] receptor currents, nor did it inhibit evoked excitatory currents mediated by AMPA or NMDA receptors. Unlike phenytoin (DPH), carbamazepine (CBZ) or lamotrigine (LTG) that blocked sustained action potential firing evoked by brief depolarising steps (750 ms) or ramps (-70 to 20 mV, 90 mV.sec⁻�), LCM could weakly reduce the frequency of action potentials evoked by brief depolarisation suggesting a potential interaction with VGSCs. In accordance with this, the effect of LCM upon neurotransmission was negated in the presence of tetrodotoxin (200 nM, TTX). The frequency of miniature EPSCs was not altered by the drug (100 [mu]M). These results discounted some crucial potential anticonvulsant targets for LCM but implied a potential interaction with electrogenic VGSCs.
When SRF duration was prolonged (10 s) LCM produced significant (P <0.01, n = 4-10, EC₅₀: 48 [mu]M) inhibition, but not within the first second of the burst EC₅₀: 640 [mu]M). Evoked TTX sensitive sodium currents in N1E-115 neuroblastoma cells were significantly reduced by LCM, CBZ, LTG and DPH when V[h]: -60 mV. Hyperpolarizing pulses (500 ms) to -100 mV could reverse block by CBZ, LTG and DPH but not LCM. The V₅₀ for steady state fast inactivation was more hyperpolarized by CBZ (-79.45 � 2.64 mV, n = 5, P < 0.001), LTG (-72.30 � 1.70 mV, n = 6, P <0.05) and DPH (-77.17 � 2.32 mV, n = 6, P <0.05) but not by LCM (-65.02 � 1.75 mV, n = 6, CONTROL: -65.84 � 0.86 mV). In contrast to CBZ, LCM did not slow recovery from fast inactivation or produce frequency dependent facilitation of block of a 3 s, 10 Hz pulse train. LCM (100 [mu]M) did produce a (V₅₀: CONTROL ~64 mV, LCM -57.47 � 4.53 mV, P <0.001, n = 4-8) hyperpolarizing shift in the voltage dependence of slow sodium channel inactivation and promoted channel entry into the slow inactivated state (P <0.001, n = 6) but did not alter the rate of recovery. I therefore conclude that LCM produces inhibition of epileptiform cellular activity, at least in part, via enhancement of voltage gated sodium channel slow inactivation and represents a molecule possessing a unique anticonvulsant mechanism of action.

Identiferoai:union.ndltd.org:ADTP/266544
Date January 2007
CreatorsErrington, Adam C, n/a
PublisherUniversity of Otago. Department of Pharmacology & Toxicology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Adam C Errington

Page generated in 0.0022 seconds