Return to search

3D backscatter localization for fine-grained robotics / Three dimensional backscatter localization for fine-grained robotics

Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2019 / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 65-71). / This thesis presents the design and implementation of TurboTrack, a 3D localization system for fine-grained robotic tasks. TurboTrack's unique capability is that it can localize backscatter nodes with sub-centimeter accuracy without any constraints on their locations or mobility. TurboTrack makes two key technical contributions. First, it presents a pipelined architecture that can extract a sensing bandwidth from every single backscatter packet that is three orders of magnitude larger than the backscatter communication bandwidth. Second, it introduces a Bayesian space-time superresolution algorithm that combines time series of the sensed bandwidth across multiple antennas to enable accurate positioning. Our experiments show that TurboTrack simultaneously achieves a median accuracy of sub-centimeter in each of the x/y/z dimensions and a 99th percentile latency less than 7.5 milliseconds in 3D localization. This enables TurboTrack's real-time prototype to achieve fine-grained positioning for agile robotic tasks, as we demonstrate in multiple collaborative applications with robotic arms and nanodrones including indoor tracking, packaging and assembly, and handover. / by Zhihong Luo. / S.M. / S.M. Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/123642
Date January 2019
CreatorsLuo, Zhihong
ContributorsFadel Adib., Program in Media Arts and Sciences (Massachusetts Institute of Technology), Program in Media Arts and Sciences (Massachusetts Institute of Technology)
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format71 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.001 seconds