Currently a growing number of users depend on the Edge Cloud Computing Paradigm in a Metro Optical Network (MON). This has led to increased competition among the Cloud Service Providers (CPs) to supply incentives for the user through guaranteed Quality of Service (QoS). If the CP fails to guarantee the QoS for the accepted request, then the user will move to another CP. Making an informed decision dynamically in such a sensitive situation demands that the CP knows the user's application requirements. The Software Defined Networking (SDN) paradigm enabled the CP to achieve such desired requirement. Therefore, a framework called Virtual Network Embedding on SDN-based Metro Optical Network (VNE-MON) is proposed in this Thesis. The use of SDN paradigm in the framework guarantees profit to the CP as well as QoS to the user.\par
The design concept of the SDN control plane, raises concerns regarding its scalability, reliability and performance compared to a traditionally distributed network. To justify concerns regarding the SDN, the performance of VNE-MON and its possible dependancy on the controller location is investigated. Several strategies are proposed and formulated using Integer Linear Programming to determine the controller location in a MON. Performance results from the assessment of the VNE-MON illustrates that it is more stable compare to GMPLS-based network. It is evident that the controller location's attributes have a significant effect on the efficacy of the accepted VN request.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/35933 |
Date | January 2017 |
Creators | Zaman, Faisal Ameen |
Contributors | Karmouch, Ahmed |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds