We present the theory of selfdistributive quasigroups and the construction of non-affine selfdistributive quasigroup of size 216 that was presented by Onoi in 1970 and which was the least known example of such structure of size 2k . Based on this construction, we introduce the notion of Onoi structures and Onoi mappings between them which generalizes Onoi's construction and which allows us to construct non-affine selfdistributive quasigroups of size 22k for k ≥ 3. We present and implement algorithm for finding central extensions of self- distributive quasigroups which enables us to classify non-affine selfdistributive quasigroups of size 2k and prove that those quasigroup exists exactly for k ≥ 6, k ̸= 7. We use this algorithm also in order to better understand the structure of non-affine selfdistributive quasigroups of size 26 . 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:398868 |
Date | January 2019 |
Creators | Nagy, Tomáš |
Contributors | Stanovský, David, Kepka, Tomáš |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0079 seconds