INTRODUCTION. Frontal collisions have been observed to cause the severe injuries on heavy goods vehicle occupants, and the lower extremities have been frequently injured. Injuries of knee joints are rarely life threatening, however they tend to give long-term consequences. AIM. Evaluate non-lethal frontal impacts towards the knee joint of Total Human Model for Safety (THUMS) v4.0 using a cylindrical barrier. The main objectives are to 1) create local injury risk functions of the knee ligaments restraining frontal impacts, 2) simulate frontal impacts towards the knee joints of THUMS and3) prepare the Hybrid III (HIII)-model for corresponding frontal impacts conducted on THUMS. The intention is for future HIII-simulations to be cross-correlated with the responses from THUMS for the ability to estimate knee ligament strains by investigating impacts on HIII. METHODS. 1) Ligament risk curves of PCL, MCL and LCL were formulated by assembling mean strain threshold values and standard deviations from literature. Virtual values were generated from these pooled strain thresholds, creating the risk curves. 2) THUMS lower body was impacted by a cylindrical steel barrier at four different locations - middle of patella, middle of knee joint, upper tibia and below tibia tuberositas. Four impact velocities ranging from 8-14 km/h were used at each location, giving a total of 16 impacts. 3) The HIII-model was prepared by removing the upper body and inserting the cylindrical steel barrier into the model file. RESULTS. The strain threshold at 50% rupture risk for PCL resulted in 23.6±4.4%, 34.2±6.0% for MCL and 26.6±6.5% for LCL. The simulated THUMS PCL strains reached between 36%-58% for the highest velocity at the impact locations where tibia was involved. Both MCL and LCL gave an approximate 5% strain outcome. The resultant knee displacement for these impacts ranged between 22 mm - 32 mm. The knee displacements at the PCL strain threshold ranged between 14 mm - 16 mm. DISCUSSION and CONCLUSION. Most of the maximal PCL strains exceeded the PCL threshold with large margins. However, the knee displacement at the PCL strain threshold resulted in outcomes comparable to the thresholds used for HIIImodel. These results supported the obtained PCL threshold to be within a reasonable range.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-262667 |
Date | January 2019 |
Creators | Nusia, Jiota |
Publisher | KTH, Skolan för kemi, bioteknologi och hälsa (CBH) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2019:101 |
Page generated in 0.0025 seconds