Return to search

Hierarchical modeling of diabetes : a pilot study

<p>In type 2 diabetes the concentration of glucose in the blood is increased, and tissues like fat and musclebecome less sensitive to insulin. These two phenomena are interrelated, but since the glucose-insulininterplay is highly complex, many aspects are still not understood. Here, a model-based approachmight help. Nevertheless, also a model-based approach has a limited impact, unless models for thesub-systems can be combined into a model for the whole-body regulation. Such a multi-level,module-based model is referred to as a hierarchical model, and this thesis is a proof-of-principle studyfor the future development of such models.</p><p>We have extended one of the best available models for the whole-body regulations, to include azoomable module for the fat tissue. The first step was to implement the whole-body model in thesoftware MathModelica, which support hierarchical modeling. Second, the originally mergedinsulin-responding module was sub-divided, so that a fat tissue was singled out. Third, a model for theinput-output profile for the fat tissue was developed by combining mechanistic knowledge withexisting and novel data from human fat cells. Finally, this detailed model was fitted to the profile of theoriginal fat model, and inserted in the whole-body model, with negligible effect on the whole-bodysimulations.</p><p>The resulting model has the ability to translate mechanistically oriented simulations on the biochemicallevel, which is the level were drugs act, to the whole-body level, which is of clinical interest. This is aquantum leap forward for modeling, and understanding, glucose homeostasis and type 2 diabetes.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-19076
Date January 2009
CreatorsNyman, Elin
PublisherBiotechnology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text

Page generated in 0.0027 seconds