Return to search

Role of Heparanase and Heparanase-Degraded Heparan Sulfate in Brain-metastatic Melanoma

Cancer metastasis is a frequent manifestation of malignant melanoma progression. Successful invasion into distant organs by tumor cells must include attachment to microvessel endothelial cells, and degradation of extracellular matrix. Heparan sulfate proteoglycans are ubiquitous macromolecules associated with cell surface and extracellular matrix of a wide range of cells and tissues. Heparanase is an extracellular matrix degradative enzyme which degrades the heparan sulfate chains of heparan sulfate proteoglycans. To investigate effects of changes in heparanase gene expression in metastatic melanoma cells, we constructed adenoviral vectors containing the full-length human heparanase cDNA in both sense (Ad-S/hep) and anti-sense orientations (Ad-AS/hep). We demonstrated increased heparanase expression and activity in melanoma cell lines following Ad-S/hep infection by Western blot analyses and heparanase activity assay. Conversely, heparanase content was significantly inhibited following infection with Ad-AS/hep. Alteration of heparanase protein expression by these adenoviral constructs correlated with invasive cellular properties in vitro and in vivo. Unexpectedly, overexpression of heparanase inhibited brain tumor formation in vivo possibly by extensive remodeling of the extracellular matrix which in turn modifies growth factor signaling and activity.
Finally, cell-surface heparan sulfate is also known to inhibit or promote tumorigenesis depending on size and composition. We proposed that heparanase generates bioactive heparan sulfate chains from the melanoma cell-surface that modify biological activities associated with vascular endothelial growth factor, a molecule essential for brain metastasis. Heparanase-degraded melanoma cell-surface heparan sulfate stimulated migration, but not proliferation of melanoma in vitro. It also enhanced angiogenesis in vivo, independent of vascular endothelial growth factor activity, an unexpected finding. Interestingly, melanoma cell-surface heparan sulfate did not have an observed effect on endothelioma migration in vitro. We also attempted to characterize the melanoma cell-surface heparan sulfate isolated by heparanase degradation by ion-pair high pressure liquid chromatography. This method proved to be not sensitive enough to detect nanogram quantities of HSGAG present in our samples.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-04022007-085414
Date02 April 2007
CreatorsRoy, Madhuchhanda
ContributorsGary E. Wise, Steven A. Barker, William G. Henk, Konstantin G. Kousoulas, George M. Strain, Kenneth R. Bondioli
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-04022007-085414/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds