This thesis presents a prototype beacon-based indoor positioning system using IR-based triangulation together with various inertial sensors mounted onto the receiver. By applying a Kalman filter, the mobile receivers can estimate their position by fusing the data received from the two independent measurement systems. Furthermore, the system is aimed to operate and conduct all calculations using microcontrollers. Multiple IR beacons and an AGV were constructed to determine the systems performance. Empirical and practical experiments show that the proposed localisation system is capable centimeter accuracy. However, because of hardware limitation the system has lacking update frequency and range. With the limitations in mind, it can be established that the final sensor-fused solution shows great promise but requires an extended component assessment and more advanced localisation estimations method such as an Extended Kalman Filter or particle filter to increase reliability.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-158175 |
Date | January 2019 |
Creators | Agmell, Simon, Dekker, Marcus |
Publisher | Linköpings universitet, Fysik och elektroteknik, Linköpings universitet, Tekniska fakulteten, Linköpings universitet, Fysik och elektroteknik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0071 seconds