<p>Phase-contrast magnetic resonance imaging (PC-MRI) is a powerful tool for measuring blood flow and has a wide range of cardiovascular applications. Simulation of PC-MRI from numerical flow data would be useful for addressing the data quality of PC-MRI measurements and to study and understand different artifacts. It would also make it possible to optimize imaging parameters prior to the PC-MRI measurements and to evaluate different methods for measuring wall shear stress.</p><p>Based on previous studies a PC-MRI simulation tool was developed. An Eulerian-Lagrangian approach was used to solve the problem. Computational fluid dynamics (CFD) data calculated on a fix structured mesh (Eulerian point of view) were used as input. From the CFD data spin particle trajectories were computed. The magnetization of the spin particle is then evaluated as the particle travels along its trajectory (Lagrangian point of view).</p><p>The simulated PC-MRI data were evaluated by comparison with PC-MRI measurements on an in vitro phantom. Results indicate that the PC-MRI simulation tool functions well. However, further development is required to include some of the artifacts. Decreasing the computation time will make more accurate and powerful simulations possible. Several suggestions for improvements are presented in this report.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-14871 |
Date | January 2008 |
Creators | Petersson, Sven |
Publisher | Linköping University, Department of Biomedical Engineering |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0022 seconds