Return to search

In vitro testing to investigate the anticoagulant/antithrombotic and antidiabetic biological activity of Leonotis Leonurus

The rising costs of prescription drugs in the maintenance of personal health and wellbeing have increased the interest in medicinal plants. The World Health Organization estimates that 65 percent-80 percent of the world’s population use traditional medicine as their primary form of health care. In this project the focus has been on the use of Leonotis leonurus extracts as a traditional medicine. The major chemical constituent of this plant is marrubiin, which is a diterpenoid labdane lactone formed from a precursor called premarrubiin. Aqueous and acetone extract (AL and OL extract, respectively) of this plant has been found to have an antithrombotic effect, with IC50 values of 3mg/ml and 6mg/ml, respectively. The extracts also have an effect on fibrinolysis, where the lysis time was decreased by more than 50 percent by the organic extract and standard marrubiin. In whole blood ADP-induced platelet aggregation, the organic extract inhibited aggregation by 68 percent at a final concentration of 138μg/ml (equivalent to 7.2μg/ml marrubiin). Marrubiin has also been screened for antithrombotic/anticoagulant activity; no antithrombotic activity has been observed but it increased the rate of fibrinolysis, by decreasing lysis time by 64 percent and also decreasing fibrin formation. From these findings it can be concluded that marrubiin has a fibrinolytic effect and antiplatelet aggregation effect. In the diabetic studies, in hyperglycemic condition, the OL (10μg/ml) extract and standard marrubiin significantly increased insulin secretion by 200 percent (2-fold) and 400 percent (4-fold), respectively, with respect to the control. The OL extract and standard marrubiin stimulated the release of insulin, the stimulatory index was significantly increased by 450 percent (4.5-fold) and 500 percent (5-fold), respectively, with respect to the control. In the apoptotic studies, in the normoglycemic and hyperglycemic conditions, the OL extract decreased the occurrence of apoptosis, in a dose-dependent manner, with the lower concentrations inducing apoptosis significantly higher than the relevant controls. Standard marrubiin did not have an effect on apoptosis in hyperglycemic condition, but it decreased the occurrence of apoptosis by 200 percent (2-fold) under normoglycemic conditions. The OL extract increased proliferation by 148 percent (1.48- fold) and 155 percent (1.55-fold) in normoglycemic and hyperglycemic conditions, respectively. The same effect was observed for standard marrubiin, where, proliferation was increased by 180 percent (1.8-fold) and 200 percent (2.0-fold) in normoglycemic and hyperglycemic conditions, respectively. RT-PCR displayed that standard marrubiin inhibited the expression of insulin by 50 percent under normoglycemic conditions.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10331
Date January 2007
CreatorsMnonopi, Nandipha Olivia
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Formatxvii, 153 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0019 seconds