Return to search

In Vivo Diffuse Reflectance Spectroscopy of Human Tissue : From Point Measurements to Imaging

This thesis presents the non-invasive use of diffuse reflectance spectroscopy (DRS) to provide information about the biochemical composition of living tissue. During DRS measurements, the incident, visible light is partially absorbed by chromophores but also scattered in the tissue before being remitted. Human skin and heart, the main tissue objects in this thesis, are dependent on a sufficient inflow of oxygenized blood, and outflow of metabolic byproducts. This process could be monitored by DRS using the spectral fingerprints of the most important tissue chromophores, oxyhemoglobin and deoxyhemoglobin. The Beer-Lambert law was used to produce models for the DRS and has thus been a foundation for the analyses throughout this work. Decomposition into the different chromophores was performed using least square fitting and tabulated data for chromophore absorptivity. These techniques were used to study skin tissue erythema induced by a provocation of an applied heat load on EMLA-treated skin. The absorbance differences, attributed to changes in the hemoglobin concentrations, were examined and found to be related to, foremost, an increase in oxyhemoglobin. To estimate UV-induced border zones between provoked and nonprovoked tissue a modified Beer-Lambert model, approximating the scattering effects, was used. An increase of chromophore content of more than two standard deviations above mean indicated responsive tissue. The analysis revealed an edge with a rather diffuse border, contradictory to the irradiation pattern. Measuring in the operating theater, on the heart, it was necessary to calculate absolute chromophore values in order to assess the state of the myocardium. Therefore, a light transport model accounting for the optical properties, and a calibrated probe, was adopted and used. The absolute values and fractions of the chromophores could then be compared between sites and individuals, despite any difference of the optical properties in the tissue. A hyperspectral imaging system was developed to visualize the spatial distribution of chromophores related to UV-provocations. A modified Beer-Lambert approximation was used including the chromophores and a baseline as an approximate scattering effect. The increase in chromophore content was estimated and evaluated over 336 hours. In conclusion, advancing from a restricted Beer-Lambert model, into a model estimating the tissue optical properties, chromophore estimation algorithms have been refined progressively. This has allowed advancement from relative chromophore analysis to absolute values, enabling precise comparisons and good prediction of physiological conditions.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-15191
Date January 2008
CreatorsHäggblad, Erik
PublisherLinköpings universitet, Biomedicinsk instrumentteknik, Linköpings universitet, Tekniska högskolan, Linköping : Linköping University Electronic Press
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1210

Page generated in 0.0021 seconds