Return to search

Skin cancer Detection byTemperature VariationAnalysis

In the medical field new technologies are incorporated for the sole purpose to enhance the quality of life for patients and even for the normal persons. Infrared technology is one of the technologies that has some applications in both the medical and biological fields. In this work, the thermal infrared (IR) measurement is used to investigate its potential in skin cancer detection. IR enjoys a non-invasive and non-contact advantages as well as favorable cost, apparently. It is also very well developed regarding the technological and methodological aspects. IR radiation, per se, is an electromagnetic radiation that all objects emit when their temperature is above the absolute zero. Human body is not different. The IR range extends, ideally, to cover wavelengths from 800 nanometer to few hundreds micrometer. Cancer, in modern life, has grown tangibly due to many factors apparently such life expectancies increase, personal habits, and ultraviolet radiation (UV) exposures among others. Moreover, the significant enhancement of technologies has helped identifying more types of cancers than before. The purpose of this work is to investigate further another method and application of IR technology not yet matured in detection of skin cancer to enhance detection ability that is accompanied with higher level of safety. An extensive research project was designed to use two laboratory animals injected with cancer cells subcutaneously and two IR radiation sensors able to detect wavelengths in the range 8 – 14 μm which proved to be a favorable range to measure the temperature of the skin. Data collection performed using two lab animals as subjects that formed a double blind investigation process. An analysis of the observations was conducted both in qualitative as well as quantitative approaches. The analysis and discussion revealed the potential of the thermal IR radiation in detecting skin cancer existence. The thesis was supported with significant evidence and achieved its target. Furthermore, it was clear that the functional nature of thermal IR detection constitutes another advantage for this method that can be used in the future to develop an objective and automated method for detection of skin cancer in a straight forward and cost effective manner.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-107422
Date January 2012
CreatorsMoustafa, Ahmed
PublisherKTH, Skolan för teknik och hälsa (STH)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-STH ; 2012:98

Page generated in 0.0103 seconds