Neste trabalho, fazemos um estudo das correntes e das medidas transversas invariantes por holonomia, e mostraremos o resultado de D. Sullivan [23] sobre a correspondência biunívoca entre estes dois objetos. Em particular mostraremos um resultado conhecido de J. Plante [17] sobre a existência de medidas transversas invariantes sob a hipótese de crescimento sub-exponencial. Apresentamos também, o resultado devido a Ruelle-Sullivan [19] de que a medida de máxima entropia de um difeomorfismo topologicamente mixing pode-se expressar como o produto de duas medidas transversas invariantes para as folheações estáveis e instáveis. Por último, mostramos que os difeomorfismos de Anosov topologicamente mixing, que preservam a orientação das folhas estáveis e folhas instáveis induzem elementos da cohomologia de DeRham / In this work, we make a study of currents and holonomy invariant transverse measure, and we will show the result of D. Sullivan [23] about the biunivocal correspondence between these two objects. In particular we show a known result of J. Plante [17] about the existence of invariant transverse measures under the hypothesis of sub-exponential growth. Also we will present, the result due to Ruelle-Sullivan [19] that the maximum entropy measure of a diffeomorphism topologically mixing can be expressed as the product of two invariant transverse measures for stable and unstable foliations. Finally, we show that the Anosov diffeomorphisms topologically mixing, which preserve the orientation of the leaves stable and unstable induce elements DeRham cohomology
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-20032013-160120 |
Date | 25 February 2013 |
Creators | Parejas, Jorge Luis Crisostomo |
Contributors | Tahzibi, Ali |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds