Clustering of single-cell RNA sequencing data is often used to show what states and subtypes cells have. Using this technique, striatal cells were clustered into subtypes using different clustering algorithms. Previously known subtypes were confirmed and new subtypes were found. One of them is a third medium spiny neuron subtype. Using the observed heterogeneity, as a second task, this project questions whether or not differences in individual neurons have an impact on the network dynamics. By clustering spiking activity from a neural network model, inconclusive results were found. Both algorithms indicating low heterogeneity, but by altering the quantity of a subtype between a low and high number, and clustering the network activity in each case, results indicate that there is an increase in the heterogeneity. This project shows a list of potential striatal subtypes and gives reasons to keep giving attention to biologically observed heterogeneity.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-183135 |
Date | January 2016 |
Creators | Bekkouche, Bo |
Publisher | KTH, Beräkningsvetenskap och beräkningsteknik (CST), KTH |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds