Return to search

Genetic and environmental determinants of meiotic recombination outcome in the fission yeast, Schizosaccharomyces pombe

Meiosis is the process by which sexually-reproducing organisms ensure that precisely half a chromosome set is passed from each parent to the following generation; this circumvents the doubling of the genome that would otherwise occur upon fertilisation. Meiosis occurs via a single round of DNA replication followed by two successive chromosome segregation events. In the first segregation, homologous chromosomes align and become physically linked through the process of meiotic recombination, which is crucial for the accurate segregation of homologous chromosomes. During the second round of segregation, sister chromatids are segregated to produce four haploid daughter cells. Failure to physically tether homologous chromosomes to each other through meiotic recombination can result in the aberrant segregation of homologous chromosomes, which can cause hereditary diseases (aneuploidies) and miscarriages in humans. Meiotic recombination also shuffles alleles of the parental chromosomes, which is crucial for evolution. The study of meiotic recombination, and its regulation, is thus paramount for our understanding of how genetic diversity is generated within populations. The work in this thesis has helped characterise factors, both genetic and environmental, that modulate meiotic recombination in the fission yeast, Schizosaccharomyces pombe. Here, I identify temperature as a major determinant of meiotic recombination outcome; when meiosis is performed at 16°C, significant reductions in meiotic recombination outcome are observed relative to meiosis performed at higher temperatures. Additionally, I present genetic and cytological evidence that the strand resection and strand invasion steps of meiotic recombination are impaired at 16°C relative to higher temperatures, but that double strand break levels appear not to be influenced by temperature. I have also characterised several novel genes predicted to be involved in meiotic recombination, and explored the genetic relationship between several genes already known to be crucial in modulating meiotic recombination. Finally, I have laid the foundations for a future project aiming to map the meiotic recombination landscape across the entire S. pombe genome.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:742366
Date January 2017
CreatorsBrown, Simon D.
PublisherUniversity of Aberdeen
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=236433

Page generated in 0.0017 seconds