This work describes methods for making dynamic observations of the effects of electron beam heating, in a range of applications to semiconductors. The studies were based on the use of the time resolved reflectivity (TRR) method, in which the reflectivity of the specimens surface is measured during the heating cycle. The best experimental conditions for this technique have been identified and several applications are described in detail. Studies were made of epitaxial regrowth of amorphous layers created by ion implantation into silicon. The TRR method was applied using red and infra-red wavelengths, to characterize the regrowth kinetics, paying special attention to the influence of electrically active dopants. The results demonstrate that doping has a large effect on the regrowth process, for reasons which are related to both electrical and structural factors. The use of isothermal electron beam heating for annealing silicon-on-sapphire (SOS) specimens was investigated. In these studies, the TRR technique was applied to measurement of the temperature of the specimens and to observation of epitaxial recrystallization of amorphous layers created by self-implantation. In SOS films the amorphous layers could be at the surface or buried beneath a thin single crystal layer, and these cases resulted in different regrowth behaviour. TRR methods using green and red probe wavelengths proved to be sensitive to the type of crystallization, as well as the rate at which it occurs. They should also help to identify the best conditions for improvement of the crystal quality of SOS films. TRR was also used to examine heating of silicon-on-insulator materials by swept line electron beams. Temperature distributions were evaluated by measuring the reflectivity of a small area as the electron beam passed through it and the effects of various changes in the heating conditions were explored. Studies were made of zone melting recrystallization by observing the abrupt reflectivity changes which occur when silicon melts or freezes. In future work, TRR techniques could be developed to allow detailed investigation of the recrystallization process in structures intended for seeded recrystallization.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:234108 |
Date | January 1987 |
Creators | Timans, P. J. |
Publisher | University of Cambridge |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0018 seconds