Return to search

An integrated evolutionary system for solving optimization problems

Many real-world decision processes require solving optimization problems which may involve different types of constraints such as inequality and equality constraints. The hurdles in solving these Constrained Optimization Problems (COPs) arise from the challenge of searching a huge variable space in order to locate feasible points with acceptable solution quality. Over the last decades Evolutionary Algorithms (EAs) have brought a tremendous advancement in the area of computer science and optimization with their ability to solve various problems. However, EAs have inherent difficulty in dealing with constraints when solving COPs. This thesis presents a new Agent-based Memetic Algorithm (AMA) for solving COPs, where the agents have the ability to independently select a suitable Life Span Learning Process (LSLP) from a set of LSLPs. Each agent represents a candidate solution of the optimization problem and tries to improve its solution through cooperation with other agents. Evolutionary operators consist of only crossover and one of the self-adaptively selected LSLPs. The performance of the proposed algorithm is tested on benchmark problems, and the experimental results show convincing performance. The quality of individuals in the initial population influences the performance of evolutionary algorithms, especially when the feasible region of the constrained optimization problems is very tiny in comparison to the entire search space. This thesis proposes a method that improves the quality of randomly generated initial solutions by sacrificing very little in diversity of the population. The proposed Search Space Reduction Technique (SSRT) is tested using five different existing EAs, including AMA, by solving a number of state-of-the-art test problems and a real world case problem. The experimental results show SSRT improves the solution quality, and speeds up the performance of the algorithms. The handling of equality constraints has long been a difficult issue for evolutionary optimization methods, although several methods are available in the literature for handling functional constraints. In any optimization problems with equality constraints, to satisfy the condition of feasibility and optimality the solution points must lie on each and every equality constraint. This reduces the size of the feasible space and makes it difficult for EAs to locate feasible and optimal solutions. A new Equality Constraint Handling Technique (ECHT) is presented in this thesis, to enhance the performance of AMA in solving constrained optimization problems with equality constraints. The basic concept is to reach a point on the equality constraint from its current position by the selected individual solution and then explore on the constraint landscape. The technique is used as an agent learning process in AMA. The experimental results confirm the improved performance of the proposed algorithm. This thesis also proposes a Modified Genetic Algorithm (MGA) for solving COPs with equality constraints. After achieving inspiring performance in AMA when dealing with equality constraints, the new technique is used in the design of MGA. The experimental results show that the proposed algorithm overcomes the limitations of GA in solving COPs with equality constraints, and provides good quality solutions.

Identiferoai:union.ndltd.org:ADTP/258702
Date January 2009
CreatorsBarkat Ullah, Abu Saleh Shah Muhammad, Engineering & Information Technology, Australian Defence Force Academy, UNSW
PublisherAwarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright

Page generated in 0.0014 seconds