Return to search

Hydrologie et cycles biogéochimiques du soufre dans deux bassins marginaux de Méditerranée pendant la Crise de Salinité Messinienne / Hydrology and biogeochemical-sulfur cycles in two Mediterranean marginal basins during the Messinian Salinity Crisis

La formation du gypse (CaSO4.2H2O) dans les bassins marginaux méditerranéens au cours du Messinien est contrôlée par la restriction des bassins et par le cycle hydrologique local. La compétition entre l’évaporation et l’apport d’eau douce par les rivières, en association avec des échanges limites avec la Méditerranée, ont permis la mise en place de conditions chimiques favorables à la formation du gypse. La restriction des bassins entraine, de plus, l’augmentation de la consommation de l’oxygène par les microorganismes, l’anoxie, et la mise en place d’un cycle biogéochimique actif du soufre. Au cours de cette étude, j’utilise la composition isotopique stable du gypse en tant que traceur des cycles de l’eau et du soufre dans les bassins marginaux. Le but est de mieux comprendre les conditions hydrologiques et géochimiques qui ont mené à la précipitation du gypse. Ce problème se place dans un débat actuel de la communauté scientifique, particulièrement depuis que de récents travaux proposent qu’une partie du gypse dans les bassins marginaux aurait pu précipiter à partir d’une colonne d’eau à faible salinité (£ 35 PSU) - hypothèse qui peut sembler peu réaliste d’un point de vue géochimique. J’ai mené une analyse isotopique à haute-résolution des couches de gypse qui composent les alternances cycliques gypse-marnes dans les bassins messiniens de Caltanissetta (BC, Sicile) et du Piémont (BP, nord-ouest de l’Italie). Ces alternances gypse-marnes correspondraient à l’expression sédimentaire des cycles astronomiques de précession (~20 ka), pendant lesquels les bassins marginaux ont subi une alternance de conditions climatiques arides et humides. Le cycle hydrologique a été trace grâce aux mesures des compositions isotopiques de l’oxygène et de l’hydrogène de l’eau de cristallisation des gypses ; le cycle biogéochimique du soufre a quant à lui été trace en mesurent les compositions isotopiques du soufre et de l’oxygène des ions sulfates des gypses. J’ai pu observer que : (1) les isotopes de l’eau piégée dans les gypses sont nettement plus légers que ceux théoriquement attendus pour des gypses ayant précipite uniquement à partir d’une eau de mer, et (2) l’eau du BC est caractérisée par un plus fort déficit en deutérium - compare à sa teneur en 18O - que l’eau du BP. Combine a un modèle hydrologique numérique, ces observations impliquent que (1) la précipitation des gypses est réalisée sous l’influence d’un apport d’eau douce fluviatile important, particulièrement au nord du BP, et est donc caractérisée par de très faibles salinités (27-50 psu pour le BC et 10-42 psu dans le BP) ; (2) le contraste de déficit en deutérium entre les deux bassins résultant de la différence de teneur en deutérium des flux évaporais respectifs, est contrôlée par a une différence d’humidité atmosphérique : cela implique que l’atmosphère au-dessus du BC était plus sèche que celle au-dessus du BP. Nous pouvons alors proposer qu’un gradient latitudinal d’humidité relative similaire à l’actuel existait au Messinien, apportant la preuve d’un climat de type méditerranéen dans la région il y a 5.97 Ma. La composition isotopique des ions sulfate suggère globalement une formation de gypse sous influence marine. Cependant, des divergences observées avec la signature marine messinienne mettent en évidence un cycle biogéochimique du soufre actif, contrôlé par la réduction des sulfates et l’oxydation des sulfures. En particulier : (1) les sulfates du BP enrichis en 18O et 34S sont indicateurs d’une sulfato-reduction dans un système géochimique ouvert ou la perte de 32S est liée a la formation de minéraux soufres sédimentaires ; (2) l’enrichissement (BC) ou l’appauvrissement (BP) significatifs en 18O dans les échantillons alors que la teneur en 34S est la même que celle de l’eau de mer indique une reoxydation de sulfure dans un système géochimique ferme d’un bassin marginal soit évaporait (BC) soit dilue (BP). / The formation of gypsum (CaSO4.2H2O) in Messinian Mediterranean marginal basins is controlled by basin restriction and the local hydrological cycle. Acting together, evaporation, river input and restricted water exchange with the Mediterranean basin bring about the chemical conditions for gypsum formation. Basin restriction also leads to enhanced microbial oxygen consumption, anoxia, and the triggering of active biogeochemical sulfur cycling. In this work I use the stable isotopic composition of gypsum as a proxy of water and sulphur cycling in the marginal basins. The goal is to better understand the hydrological and geochemical conditions that lead to gypsum precipitation. This is an open question, especially since recent work has proposed that part of the gypsum in marginal basins precipitated from a low-salinity (£ 35 PSU) water column - a hypothesis that seems unrealistic based on simple geochemical considerations. I carried out a high-resolution isotopic study of gypsum layers composing gypsum-marl cycles in the Messinian Caltanissetta (Sicily) and Piedmont (north-western Italy) marginal basins (CB and PB, respectively). These gypsum-marl cycles are thought to be the sedimentary expression of astronomical precession cycles (~20 kyr), during which the marginal basins experienced a succession of arid and wet conditions. The hydrological cycle was tracked by measuring the oxygen and hydrogen isotope composition of the gypsum-bound water molecule; the biogeochemical sulfur cycle was tracked by measuring the sulfur and oxygen isotope composition of the gypsum sulfate ion. I observed that: (1) the isotopes of gypsum-bound water are considerably lighter than those expected for gypsum precipitated via evaporation of seawater, and (2) water in the Caltanissetta basin was characterized by a higher deuterium deficit - compared to its 18O content - than water in the Piedmont basin. In conjunction with a hydrological box-model, these observations imply that (1) gypsum precipitation takes place under the influence of large riverine freshwater fluxes, particularly in the North Piedmont basin, that result in very low salinities (27-50 psu in CB and 10-42 psu in PB) and (2) the contrast in deuterium deficit results from atmospheric humidity-drived difference in the deuterieum content of the evaporative flux, implying that the atmosphere over the CB was drier than that over the PB. Thus, a latitudinal relative humidity gradient similar to the modern one existed in the Messinian, providing evidence for a Mediterranean-like climate in the region 5.97 million years ago. The isotopic composition of the gypsum sulfate ion suggests that it originates from coeval sea water. Deviation from the Messinian marine signature, however, highlights an active biogeochemical sulfur cycle driven by sulfate reduction and sulfide oxidation. In particular, (1) 18O- and 34S-rich sulfate in the Piedmont basin indicates sulfate-reduction in a geochemically open system where 32S is lost to sedimentary sulfide minerals, and (2) significant 18O-enrichment (CB) or 18O-depletion (PB), in samples where the 34S concent is that of seawater, indicates re-oxidation of sulphide in a geochemically closed system of an evaporative (CB) or dilution (PB) marginal basin. A strong relation between the hydrological cycle and the biogeochemical cycle is thus highlighted in marginal Messinian basins

Identiferoai:union.ndltd.org:theses.fr/2018USPCC107
Date19 March 2018
CreatorsEl Kilany, Aïda
ContributorsSorbonne Paris Cité, Aloisi, Giovanni
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.003 seconds