La veille anticipative stratégique et intelligence collective (VASIC) proposée par Lesca est une méthode aidant les entreprises à se mettre à l'écoute de leur environnement pour anticiper des opportunités ou des risques. Cette méthode nécessite la collecte d'informations. Or, avec le développement des technologies de l'information, les salariés font face à une surabondance d'informations. Afin d'aider à pérenniser le dispositif de veille stratégique, il est nécessaire de mettre en place des outils pour gérer la surinformation. Dans cette thèse, nous proposons une mesure de voisinage pour estimer si deux informations sont proches ; nous avons créé un prototype, nommé Alhena, basé sur cette mesure. Nous démontrons les propriétés de notre mesure ainsi que sa pertinence dans le cadre de la veille stratégique. Nous montrons également que le prototype peut servir dans d'autres domaines tels que la littérature, l'informatique et la psychologie. Ce travail est pluridisciplinaire : il aborde des aspects de veille stratégique (en sciences de gestion), de la recherche d'informations, d'informatique linguistique et de mathématiques. Nous nous sommes attachés à partir d'un problème concret en sciences de gestion à proposer un outil qui opérationnalise des techniques informatiques et mathématiques en vue d'une aide à la décision (gain de temps, aide à la lecture,...).
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00773087 |
Date | 03 July 2012 |
Creators | Casagrande, Annette |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds