Return to search

The oxidative metabolism of estrogens by mammalian liver

The main problem of estrogen metabolism studied has been to determine the nature of the water-soluble products formed from estrone-16-C¹⁴ by rat liver preparations. Comparative studies were carried out in the guinea pig.
Three types of water-soluble metabolites were demonstrated, namely, protein-bound derivatives, glucosiduronate conjugates, and unidentified products which were not bound to protein and were not hydrolysed by 2N HC1.
The water-soluble metabolites formed on incubating rat or guinea pig liver microsomes with estrone-16-C¹⁴ in the presence of NADPH and oxygen consisted of protein-bound material, some unknown derivatives, but virtually no simple conjugates. Incubation with the rat liver 8000 x g supernatant fraction resulted largely in conversion of the estrogen to the unknown water-soluble end-products, while in contrast, this liver fraction from guinea pig gave rise mainly to glucosiduronates. In the presence of UDPGA, both rat and guinea pig liver microsomes converted estrone-16-C¹⁴ to glucosiduronate conjugates, but this did not occur with the rat liver 8000 x g supernatant fraction.
Estradiol-17β-16-C¹⁴and stilbestrol-C¹⁴ behaved similarly to estrone-16-C¹⁴. In the rat, in vivo, the bulk of the urinary water-soluble derivatives of estrone were of unknown nature, while in the guinea pig, glucosiduronate conjugation predominated.
The problem was also studied by a different approach. Various compounds having structural features similar to estrone were tested for their ability to inhibit the formation of water-soluble metabolites from this estrogen by rat liver microsomes.
It was found that 2-hydroxyestrone, 2-hydroxyestradiol-17β and equilenin were potent inhibitors, while those estrogens which had an oxygen function at C-6 or C-16, as well as the 17β-glucosiduronates and non-phenolic steroids tested were inactive. The synthetic estrogens, stilbestrol and hexestrol, both inhibited the reaction, but their non-estrogenic analogues had no effect. A group of benzoquinones, naphthoquinones and ortho- and para-hydroxylated phenols proved to be powerful inhibitors, whereas anthraquinones and meta-hydroxy-lated phenols showed no activity.
In kinetic studies, 2-hydroxyestrone, equilenin, and stilbestrol appeared to act as competitive inhibitors, but menadione gave a mixed type of inhibition. / Medicine, Faculty of / Biochemistry and Molecular Biology, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/38139
Date January 1963
CreatorsLazier, Catherine B.
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0027 seconds